Alexander Ororbia


2021

pdf bib
WLV-RIT at SemEval-2021 Task 5: A Neural Transformer Framework for Detecting Toxic Spans
Tharindu Ranasinghe | Diptanu Sarkar | Marcos Zampieri | Alexander Ororbia
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

In recent years, the widespread use of social media has led to an increase in the generation of toxic and offensive content on online platforms. In response, social media platforms have worked on developing automatic detection methods and employing human moderators to cope with this deluge of offensive content. While various state-of-the-art statistical models have been applied to detect toxic posts, there are only a few studies that focus on detecting the words or expressions that make a post offensive. This motivates the organization of the SemEval-2021 Task 5: Toxic Spans Detection competition, which has provided participants with a dataset containing toxic spans annotation in English posts. In this paper, we present the WLV-RIT entry for the SemEval-2021 Task 5. Our best performing neural transformer model achieves an 0.68 F1-Score. Furthermore, we develop an open-source framework for multilingual detection of offensive spans, i.e., MUDES, based on neural transformers that detect toxic spans in texts.

pdf bib
fBERT: A Neural Transformer for Identifying Offensive Content
Diptanu Sarkar | Marcos Zampieri | Tharindu Ranasinghe | Alexander Ororbia
Findings of the Association for Computational Linguistics: EMNLP 2021

Transformer-based models such as BERT, XLNET, and XLM-R have achieved state-of-the-art performance across various NLP tasks including the identification of offensive language and hate speech, an important problem in social media. In this paper, we present fBERT, a BERT model retrained on SOLID, the largest English offensive language identification corpus available with over 1.4 million offensive instances. We evaluate fBERT’s performance on identifying offensive content on multiple English datasets and we test several thresholds for selecting instances from SOLID. The fBERT model will be made freely available to the community.

2019

pdf bib
Like a Baby: Visually Situated Neural Language Acquisition
Alexander Ororbia | Ankur Mali | Matthew Kelly | David Reitter
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We examine the benefits of visual context in training neural language models to perform next-word prediction. A multi-modal neural architecture is introduced that outperform its equivalent trained on language alone with a 2% decrease in perplexity, even when no visual context is available at test. Fine-tuning the embeddings of a pre-trained state-of-the-art bidirectional language model (BERT) in the language modeling framework yields a 3.5% improvement. The advantage for training with visual context when testing without is robust across different languages (English, German and Spanish) and different models (GRU, LSTM, Delta-RNN, as well as those that use BERT embeddings). Thus, language models perform better when they learn like a baby, i.e, in a multi-modal environment. This finding is compatible with the theory of situated cognition: language is inseparable from its physical context.