Grammatical error correction (GEC) is an important NLP task that is currently usually solved with autoregressive sequence-to-sequence models. However, approaches of this class are inherently slow due to one-by-one token generation, so non-autoregressive alternatives are needed. In this work, we propose a novel non-autoregressive approach to GEC that decouples the architecture into a permutation network that outputs a self-attention weight matrix that can be used in beam search to find the best permutation of input tokens (with auxiliary <ins> tokens) and a decoder network based on a step-unrolled denoising autoencoder that fills in specific tokens. This allows us to find the token permutation after only one forward pass of the permutation network, avoiding autoregressive constructions. We show that the resulting network improves over previously known non-autoregressive methods for GEC and reaches the level of autoregressive methods that do not use language-specific synthetic data generation methods. Our results are supported by a comprehensive experimental validation on the ConLL-2014 and BEA datasets and an extensive ablation study that supports our architectural and algorithmic choices.
Progress in neural grammatical error correction (GEC) is hindered by the lack of annotated training data. Sufficient amounts of high-quality manually annotated data are not available, so recent research has relied on generating synthetic data, pretraining on it, and then fine-tuning on real datasets; performance gains have been achieved either by ensembling or by using huge pretrained models such as XXL-T5 as the backbone. In this work, we explore an orthogonal direction: how to use available data more efficiently. First, we propose auxiliary tasks that exploit the alignment between the original and corrected sentences, such as predicting a sequence of corrections. We formulate each task as a sequence-to-sequence problem and perform multi-task training. Second, we discover that the order of datasets used for training and even individual instances within a dataset may have important effects on the final performance, so we set out to find the best training schedule. Together, these two ideas lead to significant improvements, producing results that improve state of the art with much smaller models; in particular, we outperform the best models based on T5-XXL (11B parameters) with a BART-based model (400M parameters).
Lexical substitution, i.e. generation of plausible words that can replace a particular target word in a given context, is an extremely powerful technology that can be used as a backbone of various NLP applications, including word sense induction and disambiguation, lexical relation extraction, data augmentation, etc. In this paper, we present a large-scale comparative study of lexical substitution methods employing both rather old and most recent language and masked language models (LMs and MLMs), such as context2vec, ELMo, BERT, RoBERTa, XLNet. We show that already competitive results achieved by SOTA LMs/MLMs can be further substantially improved if information about the target word is injected properly. Several existing and new target word injection methods are compared for each LM/MLM using both intrinsic evaluation on lexical substitution datasets and extrinsic evaluation on word sense induction (WSI) datasets. On two WSI datasets we obtain new SOTA results. Besides, we analyze the types of semantic relations between target words and their substitutes generated by different models or given by annotators.