Alexandra Chronopoulou


pdf bib
Milind Agarwal | Sweta Agrawal | Antonios Anastasopoulos | Luisa Bentivogli | Ondřej Bojar | Claudia Borg | Marine Carpuat | Roldano Cattoni | Mauro Cettolo | Mingda Chen | William Chen | Khalid Choukri | Alexandra Chronopoulou | Anna Currey | Thierry Declerck | Qianqian Dong | Kevin Duh | Yannick Estève | Marcello Federico | Souhir Gahbiche | Barry Haddow | Benjamin Hsu | Phu Mon Htut | Hirofumi Inaguma | Dávid Javorský | John Judge | Yasumasa Kano | Tom Ko | Rishu Kumar | Pengwei Li | Xutai Ma | Prashant Mathur | Evgeny Matusov | Paul McNamee | John P. McCrae | Kenton Murray | Maria Nadejde | Satoshi Nakamura | Matteo Negri | Ha Nguyen | Jan Niehues | Xing Niu | Atul Kr. Ojha | John E. Ortega | Proyag Pal | Juan Pino | Lonneke van der Plas | Peter Polák | Elijah Rippeth | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Yun Tang | Brian Thompson | Kevin Tran | Marco Turchi | Alex Waibel | Mingxuan Wang | Shinji Watanabe | Rodolfo Zevallos
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.

pdf bib
On the Copying Problem of Unsupervised NMT: A Training Schedule with a Language Discriminator Loss
Yihong Liu | Alexandra Chronopoulou | Hinrich Schütze | Alexander Fraser
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

Although unsupervised neural machine translation (UNMT) has achieved success in many language pairs, the copying problem, i.e., directly copying some parts of the input sentence as the translation, is common among distant language pairs, especially when low-resource languages are involved. We find this issue is closely related to an unexpected copying behavior during online back-translation (BT). In this work, we propose a simple but effective training schedule that incorporates a language discriminator loss. The loss imposes constraints on the intermediate translation so that the translation is in the desired language. By conducting extensive experiments on different language pairs, including similar and distant, high and low-resource languages, we find that our method alleviates the copying problem, thus improving the translation performance on low-resource languages.

pdf bib
Language-Family Adapters for Low-Resource Multilingual Neural Machine Translation
Alexandra Chronopoulou | Dario Stojanovski | Alexander Fraser
Proceedings of the The Sixth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2023)

Large multilingual models trained with self-supervision achieve state-of-the-art results in a wide range of natural language processing tasks. Self-supervised pretrained models are often fine-tuned on parallel data from one or multiple language pairs for machine translation. Multilingual fine-tuning improves performance on low-resource languages but requires modifying the entire model and can be prohibitively expensive. Training a new adapter on each language pair or training a single adapter on all language pairs without updating the pretrained model has been proposed as a parameter-efficient alternative. However, the former does not permit any sharing between languages, while the latter shares parameters for all languages and is susceptible to negative interference. In this paper, we propose training language-family adapters on top of mBART-50 to facilitate cross-lingual transfer. Our approach outperforms related baselines, yielding higher translation scores on average when translating from English to 17 different low-resource languages. We also show that language-family adapters provide an effective method to translate to languages unseen during pretraining.

pdf bib
AdapterSoup: Weight Averaging to Improve Generalization of Pretrained Language Models
Alexandra Chronopoulou | Matthew Peters | Alexander Fraser | Jesse Dodge
Findings of the Association for Computational Linguistics: EACL 2023

Pretrained language models (PLMs) are trained on massive corpora, but often need to specialize to specific domains. A parameter-efficient adaptation method suggests training an adapter for each domain on the task of language modeling. This leads to good in-domain scores but can be impractical for domain- or resource-restricted settings. A solution is to use a related-domain adapter for the novel domain at test time. In this paper, we introduce AdapterSoup, an approach that performs weight-space averaging of adapters trained on different domains. Our approach is embarrassingly parallel: first, we train a set of domain-specific adapters; then, for each novel domain, we determine which adapters should be averaged at test time. We present extensive experiments showing that AdapterSoup consistently improves performance to new domains without extra training. We also explore weight averaging of adapters trained on the same domain with different hyper-parameters, and show that it preserves the performance of a PLM on new domains while obtaining strong in-domain results. We explore various approaches for choosing which adapters to combine, such as text clustering and semantic similarity. We find that using clustering leads to the most competitive results on novel domains.


pdf bib
Efficient Hierarchical Domain Adaptation for Pretrained Language Models
Alexandra Chronopoulou | Matthew Peters | Jesse Dodge
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The remarkable success of large language models has been driven by dense models trained on massive unlabeled, unstructured corpora. These corpora typically contain text from diverse, heterogeneous sources, but information about the source of the text is rarely used during training. Transferring their knowledge to a target domain is typically done by continuing training in-domain. In this paper, we introduce a method to permit domain adaptation to many diverse domains using a computationally efficient adapter approach. Our method is based on the observation that textual domains are partially overlapping, and we represent domains as a hierarchical tree structure where each node in the tree is associated with a set of adapter weights. When combined with a frozen pretrained language model, this approach enables parameter sharing among related domains, while avoiding negative interference between unrelated ones. Experimental results with GPT-2 and a large fraction of the 100 most represented websites in C4 show across-the-board improvements in-domain. We additionally provide an inference time algorithm for a held-out domain and show that averaging over multiple paths through the tree enables further gains in generalization, while adding only a marginal cost to inference.

pdf bib
m^4 Adapter: Multilingual Multi-Domain Adaptation for Machine Translation with a Meta-Adapter
Wen Lai | Alexandra Chronopoulou | Alexander Fraser
Findings of the Association for Computational Linguistics: EMNLP 2022

Multilingual neural machine translation models (MNMT) yield state-of-the-art performance when evaluated on data from a domain and language pair seen at training time. However, when a MNMT model is used to translate under domain shift or to a new language pair, performance drops dramatically. We consider a very challenging scenario: adapting the MNMT model both to a new domain and to a new language pair at the same time. In this paper, we propose m^4Adapter (Multilingual Multi-Domain Adaptation for Machine Translation with a Meta-Adapter), which combines domain and language knowledge using meta-learning with adapters. We present results showing that our approach is a parameter-efficient solution which effectively adapts a model to both a new language pair and a new domain, while outperforming other adapter methods. An ablation study also shows that our approach more effectively transfers domain knowledge across different languages and language information across different domains.


pdf bib
Improving the Lexical Ability of Pretrained Language Models for Unsupervised Neural Machine Translation
Alexandra Chronopoulou | Dario Stojanovski | Alexander Fraser
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Successful methods for unsupervised neural machine translation (UNMT) employ cross-lingual pretraining via self-supervision, often in the form of a masked language modeling or a sequence generation task, which requires the model to align the lexical- and high-level representations of the two languages. While cross-lingual pretraining works for similar languages with abundant corpora, it performs poorly in low-resource and distant languages. Previous research has shown that this is because the representations are not sufficiently aligned. In this paper, we enhance the bilingual masked language model pretraining with lexical-level information by using type-level cross-lingual subword embeddings. Empirical results demonstrate improved performance both on UNMT (up to 4.5 BLEU) and bilingual lexicon induction using our method compared to a UNMT baseline.


pdf bib
Reusing a Pretrained Language Model on Languages with Limited Corpora for Unsupervised NMT
Alexandra Chronopoulou | Dario Stojanovski | Alexander Fraser
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Using a language model (LM) pretrained on two languages with large monolingual data in order to initialize an unsupervised neural machine translation (UNMT) system yields state-of-the-art results. When limited data is available for one language, however, this method leads to poor translations. We present an effective approach that reuses an LM that is pretrained only on the high-resource language. The monolingual LM is fine-tuned on both languages and is then used to initialize a UNMT model. To reuse the pretrained LM, we have to modify its predefined vocabulary, to account for the new language. We therefore propose a novel vocabulary extension method. Our approach, RE-LM, outperforms a competitive cross-lingual pretraining model (XLM) in English-Macedonian (En-Mk) and English-Albanian (En-Sq), yielding more than +8.3 BLEU points for all four translation directions.

pdf bib
Domain Adversarial Fine-Tuning as an Effective Regularizer
Giorgos Vernikos | Katerina Margatina | Alexandra Chronopoulou | Ion Androutsopoulos
Findings of the Association for Computational Linguistics: EMNLP 2020

In Natural Language Processing (NLP), pretrained language models (LMs) that are transferred to downstream tasks have been recently shown to achieve state-of-the-art results. However, standard fine-tuning can degrade the general-domain representations captured during pretraining. To address this issue, we introduce a new regularization technique, AFTER; domain Adversarial Fine-Tuning as an Effective Regularizer. Specifically, we complement the task-specific loss used during fine-tuning with an adversarial objective. This additional loss term is related to an adversarial classifier, that aims to discriminate between in-domain and out-of-domain text representations. Indomain refers to the labeled dataset of the task at hand while out-of-domain refers to unlabeled data from a different domain. Intuitively, the adversarial classifier acts as a regularize which prevents the model from overfitting to the task-specific domain. Empirical results on various natural language understanding tasks show that AFTER leads to improved performance compared to standard fine-tuning.

pdf bib
The LMU Munich System for the WMT 2020 Unsupervised Machine Translation Shared Task
Alexandra Chronopoulou | Dario Stojanovski | Viktor Hangya | Alexander Fraser
Proceedings of the Fifth Conference on Machine Translation

This paper describes the submission of LMU Munich to the WMT 2020 unsupervised shared task, in two language directions, German↔Upper Sorbian. Our core unsupervised neural machine translation (UNMT) system follows the strategy of Chronopoulou et al. (2020), using a monolingual pretrained language generation model (on German) and fine-tuning it on both German and Upper Sorbian, before initializing a UNMT model, which is trained with online backtranslation. Pseudo-parallel data obtained from an unsupervised statistical machine translation (USMT) system is used to fine-tune the UNMT model. We also apply BPE-Dropout to the low resource (Upper Sorbian) data to obtain a more robust system. We additionally experiment with residual adapters and find them useful in the Upper Sorbian→German direction. We explore sampling during backtranslation and curriculum learning to use SMT translations in a more principled way. Finally, we ensemble our best-performing systems and reach a BLEU score of 32.4 on German→Upper Sorbian and 35.2 on Upper Sorbian→German.


pdf bib
An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models
Alexandra Chronopoulou | Christos Baziotis | Alexandros Potamianos
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

A growing number of state-of-the-art transfer learning methods employ language models pretrained on large generic corpora. In this paper we present a conceptually simple and effective transfer learning approach that addresses the problem of catastrophic forgetting. Specifically, we combine the task-specific optimization function with an auxiliary language model objective, which is adjusted during the training process. This preserves language regularities captured by language models, while enabling sufficient adaptation for solving the target task. Our method does not require pretraining or finetuning separate components of the network and we train our models end-to-end in a single step. We present results on a variety of challenging affective and text classification tasks, surpassing well established transfer learning methods with greater level of complexity.


pdf bib
NTUA-SLP at IEST 2018: Ensemble of Neural Transfer Methods for Implicit Emotion Classification
Alexandra Chronopoulou | Aikaterini Margatina | Christos Baziotis | Alexandros Potamianos
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

In this paper we present our approach to tackle the Implicit Emotion Shared Task (IEST) organized as part of WASSA 2018 at EMNLP 2018. Given a tweet, from which a certain word has been removed, we are asked to predict the emotion of the missing word. In this work, we experiment with neural Transfer Learning (TL) methods. Our models are based on LSTM networks, augmented with a self-attention mechanism. We use the weights of various pretrained models, for initializing specific layers of our networks. We leverage a big collection of unlabeled Twitter messages, for pretraining word2vec word embeddings and a set of diverse language models. Moreover, we utilize a sentiment analysis dataset for pretraining a model, which encodes emotion related information. The submitted model consists of an ensemble of the aforementioned TL models. Our team ranked 3rd out of 30 participants, achieving an F1 score of 0.703.

pdf bib
NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in Tweets with Deep Attentive RNNs and Transfer Learning
Christos Baziotis | Athanasiou Nikolaos | Alexandra Chronopoulou | Athanasia Kolovou | Georgios Paraskevopoulos | Nikolaos Ellinas | Shrikanth Narayanan | Alexandros Potamianos
Proceedings of the 12th International Workshop on Semantic Evaluation

In this paper we present deep-learning models that submitted to the SemEval-2018 Task 1 competition: “Affect in Tweets”. We participated in all subtasks for English tweets. We propose a Bi-LSTM architecture equipped with a multi-layer self attention mechanism. The attention mechanism improves the model performance and allows us to identify salient words in tweets, as well as gain insight into the models making them more interpretable. Our model utilizes a set of word2vec word embeddings trained on a large collection of 550 million Twitter messages, augmented by a set of word affective features. Due to the limited amount of task-specific training data, we opted for a transfer learning approach by pretraining the Bi-LSTMs on the dataset of Semeval 2017, Task 4A. The proposed approach ranked 1st in Subtask E “Multi-Label Emotion Classification”, 2nd in Subtask A “Emotion Intensity Regression” and achieved competitive results in other subtasks.