Alexandre Reiffers-Masson
2016
Optimiser l’adaptation en ligne d’un module de compréhension de la parole avec un algorithme de bandit contre un adversaire (Adversarial bandit for optimising online active learning of spoken language understanding)
Emmanuel Ferreira
|
Alexandre Reiffers-Masson
|
Bassam Jabaian
|
Fabrice Lefèvre
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 1 : JEP
De nombreux modules de compréhension de la parole ont en commun d’être probabilistes et basés sur des algorithmes d’apprentissage automatique. Deux difficultés majeures, rencontrées par toutes les méthodes existantes sont : le coût de la collecte des données et l’adaptation d’un module existant à un nouveau domaine. Dans cet article, nous proposons un processus d’adaptation en ligne avec une politique apprise en utilisant un algorithme de type bandit contre un adversaire. Nous montrons que cette proposition peut permettre d’optimiser un équilibre entre le coût de la collecte des retours demandés aux utilisateurs et la performance globale de la compréhension du langage parlé après sa mise à jour.