Alfonso Amayuelas
2024
Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models
Alfonso Amayuelas
|
Kyle Wong
|
Liangming Pan
|
Wenhu Chen
|
William Yang Wang
Findings of the Association for Computational Linguistics: ACL 2024
This paper investigates the capabilities of Large Language Models (LLMs) in understanding their knowledge and uncertainty over questions. Specifically, we focus on addressing known-unknown questions, characterized by high uncertainty due to the absence of definitive answers. To facilitate our study, we collect a new dataset with Known-Unknown Questions (KUQ) and establish a categorization framework to clarify the origins of uncertainty in such queries. Subsequently, we examine the performance of open-source LLMs, fine-tuned using this dataset, in distinguishing between known and unknown queries within open-ended question-answering scenarios. The fine-tuned models demonstrated a significant improvement, achieving a considerable increase in F1-score relative to their pre-fine-tuning state. Through a comprehensive analysis, we reveal insights into the models’ improved uncertainty articulation and their consequent efficacy in multi-agent debates. These findings help us understand how LLMs can be trained to identify and express uncertainty, improving our knowledge of how they understand and express complex or unclear information.
MultiAgent Collaboration Attack: Investigating Adversarial Attacks in Large Language Model Collaborations via Debate
Alfonso Amayuelas
|
Xianjun Yang
|
Antonis Antoniades
|
Wenyue Hua
|
Liangming Pan
|
William Yang Wang
Findings of the Association for Computational Linguistics: EMNLP 2024
Large Language Models (LLMs) have shown exceptional results on current benchmarks when working individually. The advancement in their capabilities, along with a reduction in parameter size and inference times, has facilitated the use of these models as agents, enabling interactions among multiple models to execute complex tasks. Such collaborations offer several advantages, including the use of specialized models (e.g. coding), improved confidence through multiple computations, and enhanced divergent thinking, leading to more diverse outputs. Thus, the collaborative use of language models is expected to grow significantly in the coming years. In this work, we evaluate the behavior of a network of models collaborating through debate under the influence of an adversary. We introduce pertinent metrics to assess the adversary’s effectiveness, focusing on system accuracy and model agreement. Our findings highlight the importance of a model’s persuasive ability in influencing others. Additionally, we explore inference-time methods to generate more compelling arguments and evaluate the potential of prompt-based mitigation as a defensive strategy.
Search
Fix data
Co-authors
- Liangming Pan 2
- William Yang Wang 2
- Antonis Antoniades 1
- Wenhu Chen 1
- Wenyue Hua 1
- show all...