Alice Hutchings


2020

pdf bib
Detecting Trending Terms in Cybersecurity Forum Discussions
Jack Hughes | Seth Aycock | Andrew Caines | Paula Buttery | Alice Hutchings
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

We present a lightweight method for identifying currently trending terms in relation to a known prior of terms, using a weighted log-odds ratio with an informative prior. We apply this method to a dataset of posts from an English-language underground hacking forum, spanning over ten years of activity, with posts containing misspellings, orthographic variation, acronyms, and slang. Our statistical approach supports analysis of linguistic change and discussion topics over time, without a requirement to train a topic model for each time interval for analysis. We evaluate the approach by comparing the results to TF-IDF using the discounted cumulative gain metric with human annotations, finding our method outperforms TF-IDF on information retrieval.

2018

pdf bib
Aggressive language in an online hacking forum
Andrew Caines | Sergio Pastrana | Alice Hutchings | Paula Buttery
Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)

We probe the heterogeneity in levels of abusive language in different sections of the Internet, using an annotated corpus of Wikipedia page edit comments to train a binary classifier for abuse detection. Our test data come from the CrimeBB Corpus of hacking-related forum posts and we find that (a) forum interactions are rarely abusive, (b) the abusive language which does exist tends to be relatively mild compared to that found in the Wikipedia comments domain, and tends to involve aggressive posturing rather than hate speech or threats of violence. We observe that the purpose of conversations in online forums tend to be more constructive and informative than those in Wikipedia page edit comments which are geared more towards adversarial interactions, and that this may explain the lower levels of abuse found in our forum data than in Wikipedia comments. Further work remains to be done to compare these results with other inter-domain classification experiments, and to understand the impact of aggressive language in forum conversations.