Alina Oprea
2024
User Inference Attacks on Large Language Models
Nikhil Kandpal
|
Krishna Pillutla
|
Alina Oprea
|
Peter Kairouz
|
Christopher A. Choquette-Choo
|
Zheng Xu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Text written by humans makes up the vast majority of the data used to pre-train and fine-tune large language models (LLMs). Many sources of this data—like code, forum posts, personal websites, and books—are easily attributed to one or a few “users”. In this paper, we ask if it is possible to infer if any of a _user’s_ data was used to train an LLM. Not only would this constitute a breach of privacy, but it would also enable users to detect when their data was used for training. We develop the first effective attacks for _user inference_—at times, with near-perfect success—against LLMs. Our attacks are easy to employ, requiring only black-box access to an LLM and a few samples from the user, which _need not be the ones that were trained on_. We find, both theoretically and empirically, that certain properties make users more susceptible to user inference: being an outlier, having highly correlated examples, and contributing a larger fraction of data. Based on these findings, we identify several methods for mitigating user inference including training with example-level differential privacy, removing within-user duplicate examples, and reducing a user’s contribution to the training data. Though these provide partial mitigation, our work highlights the need to develop methods to fully protect LLMs from user inference.
Search