Alison Smith-Renner


2023

pdf bib
Harnessing the power of LLMs: Evaluating human-AI text co-creation through the lens of news headline generation
Zijian Ding | Alison Smith-Renner | Wenjuan Zhang | Joel Tetreault | Alejandro Jaimes
Findings of the Association for Computational Linguistics: EMNLP 2023

To explore how humans can best leverage LLMs for writing and how interacting with these models affects feelings of ownership and trust in the writing process, we compared common human-AI interaction types (e.g., guiding system, selecting from system outputs, post-editing outputs) in the context of LLM-assisted news headline generation. While LLMs alone can generate satisfactory news headlines, on average, human control is needed to fix undesirable model outputs. Of the interaction methods, guiding and selecting model output added the most benefit with the lowest cost (in time and effort). Further, AI assistance did not harm participants’ perception of control compared to freeform editing.

2022

pdf bib
Mapping the Design Space of Human-AI Interaction in Text Summarization
Ruijia Cheng | Alison Smith-Renner | Ke Zhang | Joel Tetreault | Alejandro Jaimes-Larrarte
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Automatic text summarization systems commonly involve humans for preparing data or evaluating model performance, yet, there lacks a systematic understanding of humans’ roles, experience, and needs when interacting with or being assisted by AI. From a human-centered perspective, we map the design opportunities and considerations for human-AI interaction in text summarization and broader text generation tasks. We first conducted a systematic literature review of 70 papers, developing a taxonomy of five interactions in AI-assisted text generation and relevant design dimensions. We designed text summarization prototypes for each interaction. We then interviewed 16 users, aided by the prototypes, to understand their expectations, experience, and needs regarding efficiency, control, and trust with AI in text summarization and propose design considerations accordingly.

pdf bib
An Exploration of Post-Editing Effectiveness in Text Summarization
Vivian Lai | Alison Smith-Renner | Ke Zhang | Ruijia Cheng | Wenjuan Zhang | Joel Tetreault | Alejandro Jaimes-Larrarte
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Automatic summarization methods are efficient but can suffer from low quality. In comparison, manual summarization is expensive but produces higher quality. Can humans and AI collaborate to improve summarization performance? In similar text generation tasks (e.g., machine translation), human-AI collaboration in the form of “post-editing” AI-generated text reduces human workload and improves the quality of AI output. Therefore, we explored whether post-editing offers advantages in text summarization. Specifically, we conducted an experiment with 72 participants, comparing post-editing provided summaries with manual summarization for summary quality, human efficiency, and user experience on formal (XSum news) and informal (Reddit posts) text. This study sheds valuable insights on when post-editing is useful for text summarization: it helped in some cases (e.g., when participants lacked domain knowledge) but not in others (e.g., when provided summaries include inaccurate information). Participants’ different editing strategies and needs for assistance offer implications for future human-AI summarization systems.

pdf bib
Human-Centered Evaluation of Explanations
Jordan Boyd-Graber | Samuel Carton | Shi Feng | Q. Vera Liao | Tania Lombrozo | Alison Smith-Renner | Chenhao Tan
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts

The NLP community are increasingly interested in providing explanations for NLP models to help people make sense of model behavior and potentially improve human interaction with models. In addition to computational challenges in generating these explanations, evaluations of the generated explanations require human-centered perspectives and approaches. This tutorial will provide an overview of human-centered evaluations of explanations. First, we will give a brief introduction to the psychological foundation of explanations as well as types of NLP model explanations and their corresponding presentation, to provide the necessary background. We will then present a taxonomy of human-centered evaluation of explanations and dive into depth in the two categories: 1) evaluation based on human-annotated explanations; 2) evaluation with human-subjects studies. We will conclude by discussing future directions. We will also adopt a flipped format to maximize the in- teractive components for the live audience.

2019

pdf bib
Why Didn’t You Listen to Me? Comparing User Control of Human-in-the-Loop Topic Models
Varun Kumar | Alison Smith-Renner | Leah Findlater | Kevin Seppi | Jordan Boyd-Graber
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

To address the lack of comparative evaluation of Human-in-the-Loop Topic Modeling (HLTM) systems, we implement and evaluate three contrasting HLTM modeling approaches using simulation experiments. These approaches extend previously proposed frameworks, including constraints and informed prior-based methods. Users should have a sense of control in HLTM systems, so we propose a control metric to measure whether refinement operations’ results match users’ expectations. Informed prior-based methods provide better control than constraints, but constraints yield higher quality topics.