Allen Riddell


2022

pdf bib
CCTAA: A Reproducible Corpus for Chinese Authorship Attribution Research
Haining Wang | Allen Riddell
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Authorship attribution infers the likely author of an unsigned, single-authored document from a pool of candidates. Despite recent advances, a lack of standard, reproducible testbeds for Chinese language documents impedes progress. In this paper, we present the Chinese Cross-Topic Authorship Attribution (CCTAA) corpus. It is the first standard testbed for authorship attribution on contemporary Chinese prose. The cross-topic design and relatively inflexible genre of newswire contribute to an appropriate level of difficulty. It supports reproducible research by using pre-defined data splits. We show that a sequence classifier based on pre-trained Chinese RoBERTa embedding and a support vector machine classifier using function character n-gram frequency features perform below expectations on this task. The code for generating the corpus and reproducing the baselines is freely available at https://codeberg.org/haining/cctaa.

2021

pdf bib
Mode Effects’ Challenge to Authorship Attribution
Haining Wang | Allen Riddell | Patrick Juola
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

The success of authorship attribution relies on the presence of linguistic features specific to individual authors. There is, however, limited research assessing to what extent authorial style remains constant when individuals switch from one writing modality to another. We measure the effect of writing mode on writing style in the context of authorship attribution research using a corpus of documents composed online (in a web browser) and documents composed offline using a traditional word processor. The results confirm the existence of a “mode effect” on authorial style. Online writing differs systematically from offline writing in terms of sentence length, word use, readability, and certain part-of-speech ratios. These findings have implications for research design and feature engineering in authorship attribution studies.

pdf bib
Automating the Detection of Poetic Features: The Limerick as Model Organism
Almas Abdibayev | Yohei Igarashi | Allen Riddell | Daniel Rockmore
Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

In this paper we take up the problem of “limerick detection” and describe a system to identify five-line poems as limericks or not. This turns out to be a surprisingly difficult challenge with many subtleties. More precisely, we produce an algorithm which focuses on the structural aspects of the limerick – rhyme scheme and rhythm (i.e., stress patterns) – and when tested on a a culled data set of 98,454 publicly available limericks, our “limerick filter” accepts 67% as limericks. The primary failure of our filter is on the detection of “non-standard” rhymes, which we highlight as an outstanding challenge in computational poetics. Our accent detection algorithm proves to be very robust. Our main contributions are (1) a novel rhyme detection algorithm that works on English words including rare proper nouns and made-up words (and thus, words not in the widely used CMUDict database); (2) a novel rhythm-identifying heuristic that is robust to language noise at moderate levels and comparable in accuracy to state-of-the-art scansion algorithms. As a third significant contribution (3) we make publicly available a large corpus of limericks that includes tags of “limerick” or “not-limerick” as determined by our identification software, thereby providing a benchmark for the community. The poetic tasks that we have identified as challenges for machines suggest that the limerick is a useful “model organism” for the study of machine capabilities in poetry and more broadly literature and language. We include a list of open challenges as well. Generally, we anticipate that this work will provide useful material and benchmarks for future explorations in the field.

pdf bib
BPoMP: The Benchmark of Poetic Minimal Pairs – Limericks, Rhyme, and Narrative Coherence
Almas Abdibayev | Allen Riddell | Daniel Rockmore
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

We adapt BLiMP (Benchmark of Linguistic Minimal Pairs) language model evaluation framework to the context of poetry, introducing the first of a series of tasks titled Benchmark of Poetic Minimal Pairs (BPoMP). The tasks presented herein use one genre of English-language poetry, the limerick (five-lines, rhyme scheme AABBA). Following the BLiMP schema, the BPoMP tasks use 10,000 minimal pairs of limerick/corrupted limerick. The latter is created by (1) shuffling two rhyming end-of-the-line words, (2) shuffling two rhyming lines, (3) replacing end-of-the-line word by a non-rhyming synonym. Our general task is detection of the original limerick, which we believe tests a language model’s capacity to utilize “end rhymes”, a common feature of poetry. We evaluate Transformer-based models by checking if they assign a higher probability to the non-corrupted limerick in each minimal pair. We find that the models identify the original limerick at rates better than chance, but with a nontrivial gap relative to human accuracy (average of 98.3% across tasks). The publicly available curated set of limericks accompanying this paper is an additional contribution. In general, we see this as a first step to create a community of NLP activity around the rigorous computational study of poetry.

pdf bib
Unsupervised Text Style Transfer with Content Embeddings
Keith Carlson | Allen Riddell | Daniel Rockmore
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

The style transfer task (here style is used in a broad “authorial” sense with many aspects including register, sentence structure, and vocabulary choice) takes text input and rewrites it in a specified target style preserving the meaning, but altering the style of the source text to match that of the target. Much of the existing research on this task depends on the use of parallel datasets. In this work we employ recent results in unsupervised cross-lingual language modeling (XLM) and machine translation to effect style transfer while treating the input data as unaligned. First, we show that adding “content embeddings” to the XLM which capture human-specified groupings of subject matter can improve performance over the baseline model. Evaluation of style transfer has often relied on metrics designed for machine translation which have received criticism of their suitability for this task. As a second contribution, we propose the use of a suite of classical stylometrics as a useful complement for evaluation. We select a few such measures and include these in the analysis of our results.

pdf bib
A Call for Clarity in Contemporary Authorship Attribution Evaluation
Allen Riddell | Haining Wang | Patrick Juola
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

Recent research has documented that results reported in frequently-cited authorship attribution papers are difficult to reproduce. Inaccessible code and data are often proposed as factors which block successful reproductions. Even when original materials are available, problems remain which prevent researchers from comparing the effectiveness of different methods. To solve the remaining problems—the lack of fixed test sets and the use of inappropriately homogeneous corpora—our paper contributes materials for five closed-set authorship identification experiments. The five experiments feature texts from 106 distinct authors. Experiments involve a range of contemporary non-fiction American English prose. These experiments provide the foundation for comparable and reproducible authorship attribution research involving contemporary writing.

pdf bib
Varieties of Plain Language
Allen Riddell | Yohei Igarashi
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

Many organizations seek or need to produce documents that are written plainly. In the United States, the “Plain Writing Act of 2010” requires that many federal agencies’ documents for the public are written in plain English. In particular, the government’s Plain Language Action and Information Network (“PLAIN”) recommends that writers use short sentences and everyday words, as does the Securities and Exchange Commission’s “Plain English Rule.” Since the 1970s, American plain language advocates have moved away from readability measures and favored usability testing and document design considerations. But in this paper we use quantitative measures of sentence length and word difficulty that (1) reveal stylistic variation among PLAIN’s exemplars of plain writing, and (2) help us position PLAIN’s exemplars relative to documents written in other kinds of accessible English (e.g., The New York Times, Voice of America Special English, and Wikipedia) and one academic document likely to be perceived as difficult. Uncombined measures for sentences and vocabulary—left separate, unlike in traditional readability formulas—can complement usability testing and document design considerations, and advance knowledge about different types of plainer English.