Alp Öktem


2024

pdf bib
Nós-TTS: aWeb User Interface for Galician Text-to-Speech
Carmen Magariños | Alp Öktem | Antonio Moscoso Sánchez | Marta Vázquez Abuín | Noelia García Díaz | Adina Ioana Vladu | Elisa Fernández Rei | María Baqueiro Vidal
Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 2

2022

pdf bib
Preparing an endangered language for the digital age: The Case of Judeo-Spanish
Alp Öktem | Rodolfo Zevallos | Yasmin Moslem | Özgür Güneş Öztürk | Karen Gerson Şarhon
Proceedings of the Workshop on Resources and Technologies for Indigenous, Endangered and Lesser-resourced Languages in Eurasia within the 13th Language Resources and Evaluation Conference

We develop machine translation and speech synthesis systems to complement the efforts of revitalizing Judeo-Spanish, the exiled language of Sephardic Jews, which survived for centuries, but now faces the threat of extinction in the digital age. Building on resources created by the Sephardic community of Turkey and elsewhere, we create corpora and tools that would help preserve this language for future generations. For machine translation, we first develop a Spanish to Judeo-Spanish rule-based machine translation system, in order to generate large volumes of synthetic parallel data in the relevant language pairs: Turkish, English and Spanish. Then, we train baseline neural machine translation engines using this synthetic data and authentic parallel data created from translations by the Sephardic community. For text-to-speech synthesis, we present a 3.5-hour single speaker speech corpus for building a neural speech synthesis engine. Resources, model weights and online inference engines are shared publicly.

2020

bib
Empowering translators of marginalized languages through the use of language technology
Alp Öktem | Manuel Locria | Eric Paquin | Grace Tang
Workshop on the Impact of Machine Translation (iMpacT 2020)

pdf bib
Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages
Wilhelmina Nekoto | Vukosi Marivate | Tshinondiwa Matsila | Timi Fasubaa | Taiwo Fagbohungbe | Solomon Oluwole Akinola | Shamsuddeen Muhammad | Salomon Kabongo Kabenamualu | Salomey Osei | Freshia Sackey | Rubungo Andre Niyongabo | Ricky Macharm | Perez Ogayo | Orevaoghene Ahia | Musie Meressa Berhe | Mofetoluwa Adeyemi | Masabata Mokgesi-Selinga | Lawrence Okegbemi | Laura Martinus | Kolawole Tajudeen | Kevin Degila | Kelechi Ogueji | Kathleen Siminyu | Julia Kreutzer | Jason Webster | Jamiil Toure Ali | Jade Abbott | Iroro Orife | Ignatius Ezeani | Idris Abdulkadir Dangana | Herman Kamper | Hady Elsahar | Goodness Duru | Ghollah Kioko | Murhabazi Espoir | Elan van Biljon | Daniel Whitenack | Christopher Onyefuluchi | Chris Chinenye Emezue | Bonaventure F. P. Dossou | Blessing Sibanda | Blessing Bassey | Ayodele Olabiyi | Arshath Ramkilowan | Alp Öktem | Adewale Akinfaderin | Abdallah Bashir
Findings of the Association for Computational Linguistics: EMNLP 2020

Research in NLP lacks geographic diversity, and the question of how NLP can be scaled to low-resourced languages has not yet been adequately solved. ‘Low-resourced’-ness is a complex problem going beyond data availability and reflects systemic problems in society. In this paper, we focus on the task of Machine Translation (MT), that plays a crucial role for information accessibility and communication worldwide. Despite immense improvements in MT over the past decade, MT is centered around a few high-resourced languages. As MT researchers cannot solve the problem of low-resourcedness alone, we propose participatory research as a means to involve all necessary agents required in the MT development process. We demonstrate the feasibility and scalability of participatory research with a case study on MT for African languages. Its implementation leads to a collection of novel translation datasets, MT benchmarks for over 30 languages, with human evaluations for a third of them, and enables participants without formal training to make a unique scientific contribution. Benchmarks, models, data, code, and evaluation results are released at https://github.com/masakhane-io/masakhane-mt.

pdf bib
TICO-19: the Translation Initiative for COvid-19
Antonios Anastasopoulos | Alessandro Cattelan | Zi-Yi Dou | Marcello Federico | Christian Federmann | Dmitriy Genzel | Franscisco Guzmán | Junjie Hu | Macduff Hughes | Philipp Koehn | Rosie Lazar | Will Lewis | Graham Neubig | Mengmeng Niu | Alp Öktem | Eric Paquin | Grace Tang | Sylwia Tur
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

The COVID-19 pandemic is the worst pandemic to strike the world in over a century. Crucial to stemming the tide of the SARS-CoV-2 virus is communicating to vulnerable populations the means by which they can protect themselves. To this end, the collaborators forming the Translation Initiative for COvid-19 (TICO-19) have made test and development data available to AI and MT researchers in 35 different languages in order to foster the development of tools and resources for improving access to information about COVID-19 in these languages. In addition to 9 high-resourced, ”pivot” languages, the team is targeting 26 lesser resourced languages, in particular languages of Africa, South Asia and South-East Asia, whose populations may be the most vulnerable to the spread of the virus. The same data is translated into all of the languages represented, meaning that testing or development can be done for any pairing of languages in the set. Further, the team is converting the test and development data into translation memories (TMXs) that can be used by localizers from and to any of the languages.

2017

pdf bib
Automatic Extraction of Parallel Speech Corpora from Dubbed Movies
Alp Öktem | Mireia Farrús | Leo Wanner
Proceedings of the 10th Workshop on Building and Using Comparable Corpora

This paper presents a methodology to extract parallel speech corpora based on any language pair from dubbed movies, together with an application framework in which some corresponding prosodic parameters are extracted. The obtained parallel corpora are especially suitable for speech-to-speech translation applications when a prosody transfer between source and target languages is desired.

pdf bib
Revising the METU-Sabancı Turkish Treebank: An Exercise in Surface-Syntactic Annotation of Agglutinative Languages
Alicia Burga | Alp Öktem | Leo Wanner
Proceedings of the Fourth International Conference on Dependency Linguistics (Depling 2017)

Search Fix data