Amanda Bertsch


pdf bib
Evaluating Gender Bias Transfer from Film Data
Amanda Bertsch | Ashley Oh | Sanika Natu | Swetha Gangu | Alan W. Black | Emma Strubell
Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

Films are a rich source of data for natural language processing. OpenSubtitles (Lison and Tiedemann, 2016) is a popular movie script dataset, used for training models for tasks such as machine translation and dialogue generation. However, movies often contain biases that reflect society at the time, and these biases may be introduced during pre-training and influence downstream models. We perform sentiment analysis on template infilling (Kurita et al., 2019) and the Sentence Embedding Association Test (May et al., 2019) to measure how BERT-based language models change after continued pre-training on OpenSubtitles. We consider gender bias as a primary motivating case for this analysis, while also measuring other social biases such as disability. We show that sentiment analysis on template infilling is not an effective measure of bias due to the rarity of disability and gender identifying tokens in the movie dialogue. We extend our analysis to a longitudinal study of bias in film dialogue over the last 110 years and find that continued pre-training on OpenSubtitles encodes additional bias into BERT. We show that BERT learns associations that reflect the biases and representation of each film era, suggesting that additional care must be taken when using historical data.


pdf bib
Detection of Puffery on the English Wikipedia
Amanda Bertsch | Steven Bethard
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)

On Wikipedia, an online crowdsourced encyclopedia, volunteers enforce the encyclopedia’s editorial policies. Wikipedia’s policy on maintaining a neutral point of view has inspired recent research on bias detection, including “weasel words” and “hedges”. Yet to date, little work has been done on identifying “puffery,” phrases that are overly positive without a verifiable source. We demonstrate that collecting training data for this task requires some care, and construct a dataset by combining Wikipedia editorial annotations and information retrieval techniques. We compare several approaches to predicting puffery, and achieve 0.963 f1 score by incorporating citation features into a RoBERTa model. Finally, we demonstrate how to integrate our model with Wikipedia’s public infrastructure to give back to the Wikipedia editor community.