Amanda Doucette


2024

pdf bib
Correlation Does Not Imply Compensation: Complexity and Irregularity in the Lexicon
Amanda Doucette | Ryan Cotterell | Morgan Sonderegger | Timothy J. O’Donnell
Proceedings of the Society for Computation in Linguistics 2024

2017

pdf bib
Inherent Biases of Recurrent Neural Networks for Phonological Assimilation and Dissimilation
Amanda Doucette
Proceedings of the 7th Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2017)

A recurrent neural network model of phonological pattern learning is proposed. The model is a relatively simple neural network with one recurrent layer, and displays biases in learning that mimic observed biases in human learning. Single-feature patterns are learned faster than two-feature patterns, and vowel or consonant-only patterns are learned faster than patterns involving vowels and consonants, mimicking the results of laboratory learning experiments. In non-recurrent models, capturing these biases requires the use of alpha features or some other representation of repeated features, but with a recurrent neural network, these elaborations are not necessary.