2023
pdf
bib
abs
ArchBERT: Bi-Modal Understanding of Neural Architectures and Natural Languages
Mohammad Akbari
|
Saeed Ranjbar Alvar
|
Behnam Kamranian
|
Amin Banitalebi-Dehkordi
|
Yong Zhang
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL)
Building multi-modal language models has been a trend in the recent years, where additional modalities such as image, video, speech, etc. are jointly learned along with natural languages (i.e., textual information). Despite the success of these multi-modal language models with different modalities, there is no existing solution for neural network architectures and natural languages. Providing neural architectural information as a new modality allows us to provide fast architecture-2-text and text-2-architecture retrieval/generation services on the cloud with a single inference. Such solution is valuable in terms of helping beginner and intermediate ML users to come up with better neural architectures or AutoML approaches with a simple text query. In this paper, we propose ArchBERT, a bi-modal model for joint learning and understanding of neural architectures and natural languages, which opens up new avenues for research in this area. We also introduce a pre-training strategy named Masked Architecture Modeling (MAM) for a more generalized joint learning. Moreover, we introduce and publicly release two new bi-modal datasets for training and validating our methods. The ArchBERT’s performance is verified through a set of numerical experiments on different downstream tasks such as architecture-oriented reasoning, question answering, and captioning (summarization). Datasets, codes, and demos are available as supplementary materials.
2022
pdf
bib
abs
E-LANG: Energy-Based Joint Inferencing of Super and Swift Language Models
Mohammad Akbari
|
Amin Banitalebi-Dehkordi
|
Yong Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Building huge and highly capable language models has been a trend in the past years. Despite their great performance, they incur high computational cost. A common solution is to apply model compression or choose light-weight architectures, which often need a separate fixed-size model for each desirable computational budget, and may lose performance in case of heavy compression. This paper proposes an effective dynamic inference approach, called E-LANG, which distributes the inference between large accurate Super-models and light-weight Swift models. To this end, a decision making module routes the inputs to Super or Swift models based on the energy characteristics of the representations in the latent space. This method is easily adoptable and architecture agnostic. As such, it can be applied to black-box pre-trained models without a need for architectural manipulations, reassembling of modules, or re-training. Unlike existing methods that are only applicable to encoder-only backbones and classification tasks, our method also works for encoder-decoder structures and sequence-to-sequence tasks such as translation. The E-LANG performance is verified through a set of experiments with T5 and BERT backbones on GLUE, SuperGLUE, and WMT. In particular, we outperform T5-11B with an average computations speed-up of 3.3X on GLUE and 2.9X on SuperGLUE. We also achieve BERT-based SOTA on GLUE with 3.2X less computations. Code and demo are available in supplementary materials.
pdf
bib
abs
Augmenting Operations Research with Auto-Formulation of Optimization Models From Problem Descriptions
Rindra Ramamonjison
|
Haley Li
|
Timothy Yu
|
Shiqi He
|
Vishnu Rengan
|
Amin Banitalebi-dehkordi
|
Zirui Zhou
|
Yong Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track
We describe an augmented intelligence system for simplifying and enhancing the modeling experience for operations research. Using this system, the user receives a suggested formulation of an optimization problem based on its description. To facilitate this process, we build an intuitive user interface system that enables the users to validate and edit the suggestions. We investigate controlled generation techniques to obtain an automatic suggestion of formulation. Then, we evaluate their effectiveness with a newly created dataset of linear programming problems drawn from various application domains.