AmirAli Bagher Zadeh


2020

pdf bib
CMU-MOSEAS: A Multimodal Language Dataset for Spanish, Portuguese, German and French
AmirAli Bagher Zadeh | Yansheng Cao | Simon Hessner | Paul Pu Liang | Soujanya Poria | Louis-Philippe Morency
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Modeling multimodal language is a core research area in natural language processing. While languages such as English have relatively large multimodal language resources, other widely spoken languages across the globe have few or no large-scale datasets in this area. This disproportionately affects native speakers of languages other than English. As a step towards building more equitable and inclusive multimodal systems, we introduce the first large-scale multimodal language dataset for Spanish, Portuguese, German and French. The proposed dataset, called CMU-MOSEAS (CMU Multimodal Opinion Sentiment, Emotions and Attributes), is the largest of its kind with 40,000 total labelled sentences. It covers a diverse set topics and speakers, and carries supervision of 20 labels including sentiment (and subjectivity), emotions, and attributes. Our evaluations on a state-of-the-art multimodal model demonstrates that CMU-MOSEAS enables further research for multilingual studies in multimodal language.

pdf bib
Integrating Multimodal Information in Large Pretrained Transformers
Wasifur Rahman | Md Kamrul Hasan | Sangwu Lee | AmirAli Bagher Zadeh | Chengfeng Mao | Louis-Philippe Morency | Ehsan Hoque
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recent Transformer-based contextual word representations, including BERT and XLNet, have shown state-of-the-art performance in multiple disciplines within NLP. Fine-tuning the trained contextual models on task-specific datasets has been the key to achieving superior performance downstream. While fine-tuning these pre-trained models is straightforward for lexical applications (applications with only language modality), it is not trivial for multimodal language (a growing area in NLP focused on modeling face-to-face communication). More specifically, this is due to the fact that pre-trained models don’t have the necessary components to accept two extra modalities of vision and acoustic. In this paper, we proposed an attachment to BERT and XLNet called Multimodal Adaptation Gate (MAG). MAG allows BERT and XLNet to accept multimodal nonverbal data during fine-tuning. It does so by generating a shift to internal representation of BERT and XLNet; a shift that is conditioned on the visual and acoustic modalities. In our experiments, we study the commonly used CMU-MOSI and CMU-MOSEI datasets for multimodal sentiment analysis. Fine-tuning MAG-BERT and MAG-XLNet significantly boosts the sentiment analysis performance over previous baselines as well as language-only fine-tuning of BERT and XLNet. On the CMU-MOSI dataset, MAG-XLNet achieves human-level multimodal sentiment analysis performance for the first time in the NLP community.

2019

pdf bib
UR-FUNNY: A Multimodal Language Dataset for Understanding Humor
Md Kamrul Hasan | Wasifur Rahman | AmirAli Bagher Zadeh | Jianyuan Zhong | Md Iftekhar Tanveer | Louis-Philippe Morency | Mohammed (Ehsan) Hoque
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Humor is a unique and creative communicative behavior often displayed during social interactions. It is produced in a multimodal manner, through the usage of words (text), gestures (visual) and prosodic cues (acoustic). Understanding humor from these three modalities falls within boundaries of multimodal language; a recent research trend in natural language processing that models natural language as it happens in face-to-face communication. Although humor detection is an established research area in NLP, in a multimodal context it has been understudied. This paper presents a diverse multimodal dataset, called UR-FUNNY, to open the door to understanding multimodal language used in expressing humor. The dataset and accompanying studies, present a framework in multimodal humor detection for the natural language processing community. UR-FUNNY is publicly available for research.

2018

pdf bib
Multimodal Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph
AmirAli Bagher Zadeh | Paul Pu Liang | Soujanya Poria | Erik Cambria | Louis-Philippe Morency
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Analyzing human multimodal language is an emerging area of research in NLP. Intrinsically this language is multimodal (heterogeneous), sequential and asynchronous; it consists of the language (words), visual (expressions) and acoustic (paralinguistic) modalities all in the form of asynchronous coordinated sequences. From a resource perspective, there is a genuine need for large scale datasets that allow for in-depth studies of this form of language. In this paper we introduce CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI), the largest dataset of sentiment analysis and emotion recognition to date. Using data from CMU-MOSEI and a novel multimodal fusion technique called the Dynamic Fusion Graph (DFG), we conduct experimentation to exploit how modalities interact with each other in human multimodal language. Unlike previously proposed fusion techniques, DFG is highly interpretable and achieves competative performance when compared to the previous state of the art.

pdf bib
Efficient Low-rank Multimodal Fusion With Modality-Specific Factors
Zhun Liu | Ying Shen | Varun Bharadhwaj Lakshminarasimhan | Paul Pu Liang | AmirAli Bagher Zadeh | Louis-Philippe Morency
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal research is an emerging field of artificial intelligence, and one of the main research problems in this field is multimodal fusion. The fusion of multimodal data is the process of integrating multiple unimodal representations into one compact multimodal representation. Previous research in this field has exploited the expressiveness of tensors for multimodal representation. However, these methods often suffer from exponential increase in dimensions and in computational complexity introduced by transformation of input into tensor. In this paper, we propose the Low-rank Multimodal Fusion method, which performs multimodal fusion using low-rank tensors to improve efficiency. We evaluate our model on three different tasks: multimodal sentiment analysis, speaker trait analysis, and emotion recognition. Our model achieves competitive results on all these tasks while drastically reducing computational complexity. Additional experiments also show that our model can perform robustly for a wide range of low-rank settings, and is indeed much more efficient in both training and inference compared to other methods that utilize tensor representations.

pdf bib
Multimodal Language Analysis with Recurrent Multistage Fusion
Paul Pu Liang | Ziyin Liu | AmirAli Bagher Zadeh | Louis-Philippe Morency
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Computational modeling of human multimodal language is an emerging research area in natural language processing spanning the language, visual and acoustic modalities. Comprehending multimodal language requires modeling not only the interactions within each modality (intra-modal interactions) but more importantly the interactions between modalities (cross-modal interactions). In this paper, we propose the Recurrent Multistage Fusion Network (RMFN) which decomposes the fusion problem into multiple stages, each of them focused on a subset of multimodal signals for specialized, effective fusion. Cross-modal interactions are modeled using this multistage fusion approach which builds upon intermediate representations of previous stages. Temporal and intra-modal interactions are modeled by integrating our proposed fusion approach with a system of recurrent neural networks. The RMFN displays state-of-the-art performance in modeling human multimodal language across three public datasets relating to multimodal sentiment analysis, emotion recognition, and speaker traits recognition. We provide visualizations to show that each stage of fusion focuses on a different subset of multimodal signals, learning increasingly discriminative multimodal representations.