Amirhossein Kazemnejad


2024

pdf bib
Proceedings of the 2nd GenBench Workshop on Generalisation (Benchmarking) in NLP
Dieuwke Hupkes | Verna Dankers | Khuyagbaatar Batsuren | Amirhossein Kazemnejad | Christos Christodoulopoulos | Mario Giulianelli | Ryan Cotterell
Proceedings of the 2nd GenBench Workshop on Generalisation (Benchmarking) in NLP

2023

pdf bib
Measuring the Knowledge Acquisition-Utilization Gap in Pretrained Language Models
Amirhossein Kazemnejad | Mehdi Rezagholizadeh | Prasanna Parthasarathi | Sarath Chandar
Findings of the Association for Computational Linguistics: EMNLP 2023

While pre-trained language models (PLMs) have shown evidence of acquiring vast amounts of knowledge, it remains unclear how much of this parametric knowledge is actually usable in performing downstream tasks. We propose a systematic framework to measure parametric knowledge utilization in PLMs. Our framework first extracts knowledge from a PLM’s parameters and subsequently constructs a downstream task around this extracted knowledge. Performance on this task thus depends exclusively on utilizing the model’s possessed knowledge, avoiding confounding factors like insufficient signal. As an instantiation, we study factual knowledge of PLMs and measure utilization across 125M to 13B parameter PLMs. We observe that: (1) PLMs exhibit two gaps - in acquired vs. utilized knowledge, (2) they show limited robustness in utilizing knowledge under distribution shifts, and (3) larger models close the acquired knowledge gap but the utilized knowledge gap remains. Overall, our study provides insights into PLMs’ capabilities beyond their acquired knowledge.

pdf bib
Proceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation in NLP
Dieuwke Hupkes | Verna Dankers | Khuyagbaatar Batsuren | Koustuv Sinha | Amirhossein Kazemnejad | Christos Christodoulopoulos | Ryan Cotterell | Elia Bruni
Proceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation in NLP

2022

pdf bib
The Curious Case of Absolute Position Embeddings
Koustuv Sinha | Amirhossein Kazemnejad | Siva Reddy | Joelle Pineau | Dieuwke Hupkes | Adina Williams
Findings of the Association for Computational Linguistics: EMNLP 2022

Transformer language models encode the notion of word order using positional information. Most commonly, this positional information is represented by absolute position embeddings (APEs), that are learned from the pretraining data. However, in natural language, it is not absolute position that matters, but relative position, and the extent to which APEs can capture this type of information has not been studied. In this work, we observe that models trained with APE over-rely on positional information to the point that they break-down when subjected to sentences with shifted position information. Specifically, when models are subjected to sentences starting from a non-zero position (excluding the effect of priming), they exhibit noticeably degraded performance on zero- to full-shot tasks, across a range of model families and model sizes. Our findings raise questions about the efficacy of APEs to model the relativity of position information, and invite further introspection on the sentence and word order processing strategies employed by these models.

2020

pdf bib
Paraphrase Generation by Learning How to Edit from Samples
Amirhossein Kazemnejad | Mohammadreza Salehi | Mahdieh Soleymani Baghshah
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural sequence to sequence text generation has been proved to be a viable approach to paraphrase generation. Despite promising results, paraphrases generated by these models mostly suffer from lack of quality and diversity. To address these problems, we propose a novel retrieval-based method for paraphrase generation. Our model first retrieves a paraphrase pair similar to the input sentence from a pre-defined index. With its novel editor module, the model then paraphrases the input sequence by editing it using the extracted relations between the retrieved pair of sentences. In order to have fine-grained control over the editing process, our model uses the newly introduced concept of Micro Edit Vectors. It both extracts and exploits these vectors using the attention mechanism in the Transformer architecture. Experimental results show the superiority of our paraphrase generation method in terms of both automatic metrics, and human evaluation of relevance, grammaticality, and diversity of generated paraphrases.