An Wang


2023

pdf bib
Generative Data Augmentation for Aspect Sentiment Quad Prediction
An Wang | Junfeng Jiang | Youmi Ma | Ao Liu | Naoaki Okazaki
Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)

Aspect sentiment quad prediction (ASQP) analyzes the aspect terms, opinion terms, sentiment polarity, and aspect categories in a text. One challenge in this task is the scarcity of data owing to the high annotation cost. Data augmentation techniques are commonly used to address this issue. However, existing approaches simply rewrite texts in the training data, restricting the semantic diversity of the generated data and impairing the quality due to the inconsistency between text and quads. To address these limitations, we augment quads and train a quads-to-text model to generate corresponding texts. Furthermore, we designed novel strategies to filter out low-quality data and balance the sample difficulty distribution of the augmented dataset. Empirical studies on two ASQP datasets demonstrate that our method outperforms other data augmentation methods and achieves state-of-the-art performance on the benchmarks. The source code will be released upon acceptance.

pdf bib
DREEAM: Guiding Attention with Evidence for Improving Document-Level Relation Extraction
Youmi Ma | An Wang | Naoaki Okazaki
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Document-level relation extraction (DocRE) is the task of identifying all relations between each entity pair in a document. Evidence, defined as sentences containing clues for the relationship between an entity pair, has been shown to help DocRE systems focus on relevant texts, thus improving relation extraction. However, evidence retrieval (ER) in DocRE faces two major issues: high memory consumption and limited availability of annotations. This work aims at addressing these issues to improve the usage of ER in DocRE. First, we propose DREEAM, a memory-efficient approach that adopts evidence information as the supervisory signal, thereby guiding the attention modules of the DocRE system to assign high weights to evidence. Second, we propose a self-training strategy for DREEAM to learn ER from automatically-generated evidence on massive data without evidence annotations. Experimental results reveal that our approach exhibits state-of-the-art performance on the DocRED benchmark for both DocRE and ER. To the best of our knowledge, DREEAM is the first approach to employ ER self-training.

2022

pdf bib
Semi-Supervised Formality Style Transfer with Consistency Training
Ao Liu | An Wang | Naoaki Okazaki
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Formality style transfer (FST) is a task that involves paraphrasing an informal sentence into a formal one without altering its meaning. To address the data-scarcity problem of existing parallel datasets, previous studies tend to adopt a cycle-reconstruction scheme to utilize additional unlabeled data, where the FST model mainly benefits from target-side unlabeled sentences. In this work, we propose a simple yet effective semi-supervised framework to better utilize source-side unlabeled sentences based on consistency training. Specifically, our approach augments pseudo-parallel data obtained from a source-side informal sentence by enforcing the model to generate similar outputs for its perturbed version. Moreover, we empirically examined the effects of various data perturbation methods and propose effective data filtering strategies to improve our framework. Experimental results on the GYAFC benchmark demonstrate that our approach can achieve state-of-the-art results, even with less than 40% of the parallel data.

2021

pdf bib
Attention-based Relational Graph Convolutional Network for Target-Oriented Opinion Words Extraction
Junfeng Jiang | An Wang | Akiko Aizawa
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Target-oriented opinion words extraction (TOWE) is a subtask of aspect-based sentiment analysis (ABSA). It aims to extract the corresponding opinion words for a given opinion target in a review sentence. Intuitively, the relation between an opinion target and an opinion word mostly relies on syntactics. In this study, we design a directed syntactic dependency graph based on a dependency tree to establish a path from the target to candidate opinions. Subsequently, we propose a novel attention-based relational graph convolutional neural network (ARGCN) to exploit syntactic information over dependency graphs. Moreover, to explicitly extract the corresponding opinion words toward the given opinion target, we effectively encode target information in our model with the target-aware representation. Empirical results demonstrate that our model significantly outperforms all of the existing models on four benchmark datasets. Extensive analysis also demonstrates the effectiveness of each component of our models. Our code is available at https://github.com/wcwowwwww/towe-eacl.