Ana Marasović

Also published as: Ana Marasovic


pdf bib
Do Androids Laugh at Electric Sheep? Humor “Understanding” Benchmarks from The New Yorker Caption Contest
Jack Hessel | Ana Marasovic | Jena D. Hwang | Lillian Lee | Jeff Da | Rowan Zellers | Robert Mankoff | Yejin Choi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large neural networks can now generate jokes, but do they really “understand” humor? We challenge AI models with three tasks derived from the New Yorker Cartoon Caption Contest: matching a joke to a cartoon, identifying a winning caption, and explaining why a winning caption is funny. These tasks encapsulate progressively more sophisticated aspects of “understanding” a cartoon; key elements are the complex, often surprising relationships between images and captions and the frequent inclusion of indirect and playful allusions to human experience and culture. We investigate both multimodal and language-only models: the former are challenged with the cartoon images directly, while the latter are given multifaceted descriptions of the visual scene to simulate human-level visual understanding. We find that both types of models struggle at all three tasks. For example, our best multimodal models fall 30 accuracy points behind human performance on the matching task, and, even when provided ground-truth visual scene descriptors, human-authored explanations are preferred head-to-head over the best machine-authored ones (few-shot GPT-4) in more than 2/3 of cases. We release models, code, leaderboard, and corpus, which includes newly-gathered annotations describing the image’s locations/entities, what’s unusual in the scene, and an explanation of the joke.


pdf bib
Few-Shot Self-Rationalization with Natural Language Prompts
Ana Marasovic | Iz Beltagy | Doug Downey | Matthew Peters
Findings of the Association for Computational Linguistics: NAACL 2022

Self-rationalization models that predict task labels and generate free-text elaborations for their predictions could enable more intuitive interaction with NLP systems. These models are, however, currently trained with a large amount of human-written free-text explanations for each task which hinders their broader usage. We propose to study a more realistic setting of self-rationalization using few training examples. We present FEB—a standardized collection of four existing English-language datasets and associated metrics. We identify the right prompting approach by extensively exploring natural language prompts on FEB. Then, by using this prompt and scaling the model size, we demonstrate that making progress on few-shot self-rationalization is possible. We show there is still ample room for improvement in this task: the average plausibility of generated explanations assessed by human annotators is at most 51% (with GPT-3), while plausibility of human explanations is 76%. We hope that FEB and our proposed approach will spur the community to take on the few-shot self-rationalization challenge.

pdf bib
On Advances in Text Generation from Images Beyond Captioning: A Case Study in Self-Rationalization
Shruti Palaskar | Akshita Bhagia | Yonatan Bisk | Florian Metze | Alan W Black | Ana Marasovic
Findings of the Association for Computational Linguistics: EMNLP 2022

Combining the visual modality with pretrained language models has been surprisingly effective for simple descriptive tasks such as image captioning. More general text generation however remains elusive. We take a step back and ask: How do these models work for more complex generative tasks, i.e. conditioning on both text and images? Are multimodal models simply visually adapted language models, or do they combine they reason jointly over modalities?We investigate these questions in the context of self-rationalization (jointly generating task labels/answers and free-text explanations) of three tasks: (i) visual question answering in VQA-X, (ii) visual commonsense reasoning in VCR, and (iii) visual-textual entailment in E-SNLI-VE. We show that recent unimodal advances, CLIP image representations and scaling of language models, do not consistently improveself-rationalization in multimodal tasks. We find that no single model type works universally best across tasks, datasets, and finetuning data sizes. Our findings motivate the need for novel general backbones that move text generation from images and text beyond image captioning.

pdf bib
Does Self-Rationalization Improve Robustness to Spurious Correlations?
Alexis Ross | Matthew Peters | Ana Marasovic
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Rationalization is fundamental to human reasoning and learning. NLP models trained to produce rationales along with predictions, called self-rationalization models, have been investigated for their interpretability and utility to end-users. However, the extent to which training with human-written rationales facilitates learning remains an under-explored question. We ask whether training models to self-rationalize can aid in their learning to solve tasks for the right reasons. Specifically, we evaluate how training self-rationalization models with free-text rationales affects robustness to spurious correlations in fine-tuned encoder-decoder and decoder-only models of six different sizes. We evaluate robustness to spurious correlations by measuring performance on 1) manually annotated challenge datasets and 2) subsets of original test sets where reliance on spurious correlations would fail to produce correct answers. We find that while self-rationalization can improve robustness to spurious correlations in low-resource settings, it tends to hurt robustness in higher-resource settings. Furthermore, these effects depend on model family and size, as well as on rationale content. Together, our results suggest that explainability can come at the cost of robustness; thus, appropriate care should be taken when training self-rationalizing models with the goal of creating more trustworthy models.

pdf bib
CONDAQA: A Contrastive Reading Comprehension Dataset for Reasoning about Negation
Abhilasha Ravichander | Matt Gardner | Ana Marasovic
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The full power of human language-based communication cannot be realized without negation. All human languages have some form of negation. Despite this, negation remains a challenging phenomenon for current natural language understanding systems. To facilitate the future development of models that can process negation effectively, we present CONDAQA, the first English reading comprehension dataset which requires reasoning about the implications of negated statements in paragraphs. We collect paragraphs with diverse negation cues, then have crowdworkers ask questions about the implications of the negated statement in the passage. We also have workers make three kinds of edits to the passage—paraphrasing the negated statement, changing the scope of the negation, and reversing the negation—resulting in clusters of question-answer pairs that are difficult for models to answer with spurious shortcuts. CONDAQA features 14,182 question-answer pairs with over 200 unique negation cues and is challenging for current state-of-the-art models. The best performing model on CONDAQA (UnifiedQA-v2-3b) achieves only 42% on our consistency metric, well below human performance which is 81%. We release our dataset, along with fully-finetuned, few-shot, and zero-shot evaluations, to facilitate the development of future NLP methods that work on negated language.


pdf bib
Promoting Graph Awareness in Linearized Graph-to-Text Generation
Alexander Miserlis Hoyle | Ana Marasović | Noah A. Smith
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Explaining NLP Models via Minimal Contrastive Editing (MiCE)
Alexis Ross | Ana Marasović | Matthew Peters
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Effective Attention Sheds Light On Interpretability
Kaiser Sun | Ana Marasović
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing
Nafise Sadat Moosavi | Iryna Gurevych | Angela Fan | Thomas Wolf | Yufang Hou | Ana Marasović | Sujith Ravi
Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing

pdf bib
Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus
Jesse Dodge | Maarten Sap | Ana Marasović | William Agnew | Gabriel Ilharco | Dirk Groeneveld | Margaret Mitchell | Matt Gardner
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Large language models have led to remarkable progress on many NLP tasks, and researchers are turning to ever-larger text corpora to train them. Some of the largest corpora available are made by scraping significant portions of the internet, and are frequently introduced with only minimal documentation. In this work we provide some of the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin by investigating where the data came from, and find a significant amount of text from unexpected sources like patents and US military websites. Then we explore the content of the text itself, and find machine-generated text (e.g., from machine translation systems) and evaluation examples from other benchmark NLP datasets. To understand the impact of the filters applied to create this dataset, we evaluate the text that was removed, and show that blocklist filtering disproportionately removes text from and about minority individuals. Finally, we conclude with some recommendations for how to created and document web-scale datasets from a scrape of the internet.

pdf bib
Measuring Association Between Labels and Free-Text Rationales
Sarah Wiegreffe | Ana Marasović | Noah A. Smith
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In interpretable NLP, we require faithful rationales that reflect the model’s decision-making process for an explained instance. While prior work focuses on extractive rationales (a subset of the input words), we investigate their less-studied counterpart: free-text natural language rationales. We demonstrate that *pipelines*, models for faithful rationalization on information-extraction style tasks, do not work as well on “reasoning” tasks requiring free-text rationales. We turn to models that *jointly* predict and rationalize, a class of widely used high-performance models for free-text rationalization. We investigate the extent to which the labels and rationales predicted by these models are associated, a necessary property of faithful explanation. Via two tests, *robustness equivalence* and *feature importance agreement*, we find that state-of-the-art T5-based joint models exhibit desirable properties for explaining commonsense question-answering and natural language inference, indicating their potential for producing faithful free-text rationales.


pdf bib
Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks
Suchin Gururangan | Ana Marasović | Swabha Swayamdipta | Kyle Lo | Iz Beltagy | Doug Downey | Noah A. Smith
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Language models pretrained on text from a wide variety of sources form the foundation of today’s NLP. In light of the success of these broad-coverage models, we investigate whether it is still helpful to tailor a pretrained model to the domain of a target task. We present a study across four domains (biomedical and computer science publications, news, and reviews) and eight classification tasks, showing that a second phase of pretraining in-domain (domain-adaptive pretraining) leads to performance gains, under both high- and low-resource settings. Moreover, adapting to the task’s unlabeled data (task-adaptive pretraining) improves performance even after domain-adaptive pretraining. Finally, we show that adapting to a task corpus augmented using simple data selection strategies is an effective alternative, especially when resources for domain-adaptive pretraining might be unavailable. Overall, we consistently find that multi-phase adaptive pretraining offers large gains in task performance.

pdf bib
Easy, Reproducible and Quality-Controlled Data Collection with CROWDAQ
Qiang Ning | Hao Wu | Pradeep Dasigi | Dheeru Dua | Matt Gardner | Robert L. Logan IV | Ana Marasović | Zhen Nie
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

High-quality and large-scale data are key to success for AI systems. However, large-scale data annotation efforts are often confronted with a set of common challenges: (1) designing a user-friendly annotation interface; (2) training enough annotators efficiently; and (3) reproducibility. To address these problems, we introduce CROWDAQ, an open-source platform that standardizes the data collection pipeline with customizable user-interface components, automated annotator qualification, and saved pipelines in a re-usable format. We show that CROWDAQ simplifies data annotation significantly on a diverse set of data collection use cases and we hope it will be a convenient tool for the community.

pdf bib
Natural Language Rationales with Full-Stack Visual Reasoning: From Pixels to Semantic Frames to Commonsense Graphs
Ana Marasović | Chandra Bhagavatula | Jae sung Park | Ronan Le Bras | Noah A. Smith | Yejin Choi
Findings of the Association for Computational Linguistics: EMNLP 2020

Natural language rationales could provide intuitive, higher-level explanations that are easily understandable by humans, complementing the more broadly studied lower-level explanations based on gradients or attention weights. We present the first study focused on generating natural language rationales across several complex visual reasoning tasks: visual commonsense reasoning, visual-textual entailment, and visual question answering. The key challenge of accurate rationalization is comprehensive image understanding at all levels: not just their explicit content at the pixel level, but their contextual contents at the semantic and pragmatic levels. We present RationaleˆVT Transformer, an integrated model that learns to generate free-text rationales by combining pretrained language models with object recognition, grounded visual semantic frames, and visual commonsense graphs. Our experiments show that free-text rationalization is a promising research direction to complement model interpretability for complex visual-textual reasoning tasks. In addition, we find that integration of richer semantic and pragmatic visual features improves visual fidelity of rationales.


pdf bib
Quoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning
Pradeep Dasigi | Nelson F. Liu | Ana Marasović | Noah A. Smith | Matt Gardner
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Machine comprehension of texts longer than a single sentence often requires coreference resolution. However, most current reading comprehension benchmarks do not contain complex coreferential phenomena and hence fail to evaluate the ability of models to resolve coreference. We present a new crowdsourced dataset containing more than 24K span-selection questions that require resolving coreference among entities in over 4.7K English paragraphs from Wikipedia. Obtaining questions focused on such phenomena is challenging, because it is hard to avoid lexical cues that shortcut complex reasoning. We deal with this issue by using a strong baseline model as an adversary in the crowdsourcing loop, which helps crowdworkers avoid writing questions with exploitable surface cues. We show that state-of-the-art reading comprehension models perform significantly worse than humans on this benchmark—the best model performance is 70.5 F1, while the estimated human performance is 93.4 F1.


pdf bib
SRL4ORL: Improving Opinion Role Labeling Using Multi-Task Learning with Semantic Role Labeling
Ana Marasović | Anette Frank
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

For over a decade, machine learning has been used to extract opinion-holder-target structures from text to answer the question “Who expressed what kind of sentiment towards what?”. Recent neural approaches do not outperform the state-of-the-art feature-based models for Opinion Role Labeling (ORL). We suspect this is due to the scarcity of labeled training data and address this issue using different multi-task learning (MTL) techniques with a related task which has substantially more data, i.e. Semantic Role Labeling (SRL). We show that two MTL models improve significantly over the single-task model for labeling of both holders and targets, on the development and the test sets. We found that the vanilla MTL model, which makes predictions using only shared ORL and SRL features, performs the best. With deeper analysis we determine what works and what might be done to make further improvements for ORL.


pdf bib
A Mention-Ranking Model for Abstract Anaphora Resolution
Ana Marasović | Leo Born | Juri Opitz | Anette Frank
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Resolving abstract anaphora is an important, but difficult task for text understanding. Yet, with recent advances in representation learning this task becomes a more tangible aim. A central property of abstract anaphora is that it establishes a relation between the anaphor embedded in the anaphoric sentence and its (typically non-nominal) antecedent. We propose a mention-ranking model that learns how abstract anaphors relate to their antecedents with an LSTM-Siamese Net. We overcome the lack of training data by generating artificial anaphoric sentence–antecedent pairs. Our model outperforms state-of-the-art results on shell noun resolution. We also report first benchmark results on an abstract anaphora subset of the ARRAU corpus. This corpus presents a greater challenge due to a mixture of nominal and pronominal anaphors and a greater range of confounders. We found model variants that outperform the baselines for nominal anaphors, without training on individual anaphor data, but still lag behind for pronominal anaphors. Our model selects syntactically plausible candidates and – if disregarding syntax – discriminates candidates using deeper features.


pdf bib
Modal Sense Classification At Large: Paraphrase-Driven Sense Projection, Semantically Enriched Classification Models and Cross-Genre Evaluations
Ana Marasović | Mengfei Zhou | Alexis Palmer | Anette Frank
Linguistic Issues in Language Technology, Volume 14, 2016 - Modality: Logic, Semantics, Annotation, and Machine Learning

Modal verbs have different interpretations depending on their context. Their sense categories – epistemic, deontic and dynamic – provide important dimensions of meaning for the interpretation of discourse. Previous work on modal sense classification achieved relatively high performance using shallow lexical and syntactic features drawn from small-size annotated corpora. Due to the restricted empirical basis, it is difficult to assess the particular difficulties of modal sense classification and the generalization capacity of the proposed models. In this work we create large-scale, high-quality annotated corpora for modal sense classification using an automatic paraphrase-driven projection approach. Using the acquired corpora, we investigate the modal sense classification task from different perspectives.

pdf bib
Multilingual Modal Sense Classification using a Convolutional Neural Network
Ana Marasović | Anette Frank
Proceedings of the 1st Workshop on Representation Learning for NLP