Anderson Morillo
2024
VerbaNexAI Lab at SemEval-2024 Task 1: A Multilayer Artificial Intelligence Model for Semantic Relationship Detection
Anderson Morillo
|
Daniel Peña
|
Juan Carlos Martinez Santos
|
Edwin Puertas
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
This paper presents an artificial intelligence model designed to detect semantic relationships in natural language, addressing the challenges of SemEval 2024 Task 1. Our goal is to advance machine understanding of the subtleties of human language through semantic analysis. Using a novel combination of convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and an attention mechanism, our model is trained on the STR-2022 dataset. This approach enhances its ability to detect semantic nuances in different texts. The model achieved an 81.92% effectiveness rate and ranked 24th in SemEval 2024 Task 1. These results demonstrate its robustness and adaptability in detecting semantic relationships and validate its performance in diverse linguistic contexts. Our work contributes to natural language processing by providing insights into semantic textual relatedness. It sets a benchmark for future research and promises to inspire innovations that could transform digital language processing and interaction.
2023
UTB-NLP at SemEval-2023 Task 3: Weirdness, Lexical Features for Detecting Categorical Framings, and Persuasion in Online News
Juan Cuadrado
|
Elizabeth Martinez
|
Anderson Morillo
|
Daniel Peña
|
Kevin Sossa
|
Juan Martinez-Santos
|
Edwin Puertas
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
Nowadays, persuasive messages are more and more frequent in social networks, which generates great concern in several communities, given that persuasion seeks to guide others towards the adoption of ideas, attitudes or actions that they consider to be beneficial to themselves. The efficient detection of news genre categories, detection of framing and detection of persuasion techniques requires several scientific disciplines, such as computational linguistics and sociology. Here we illustrate how we use lexical features given a news article, determine whether it is an opinion piece, aims to report factual news, or is satire. This paper presents a novel strategy for news based on Lexical Weirdness. The results are part of our participation in subtasks 1 and 2 in SemEval 2023 Task 3.
Search
Fix data
Co-authors
- Daniel Peña 2
- Edwin Puertas 2
- Juan Cuadrado 1
- Elizabeth Martinez 1
- Juan Carlos Martinez Santos 1
- show all...