Andrea Burns


2024

pdf bib
ImageInWords: Unlocking Hyper-Detailed Image Descriptions
Roopal Garg | Andrea Burns | Burcu Karagol Ayan | Yonatan Bitton | Ceslee Montgomery | Yasumasa Onoe | Andrew Bunner | Ranjay Krishna | Jason Michael Baldridge | Radu Soricut
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Despite the longstanding adage ”an image is worth a thousand words,” generating accurate hyper-detailed image descriptions remains unsolved. Trained on short web-scraped image-text, vision-language models often generate incomplete descriptions with visual inconsistencies. We address this via a novel data-centric approach with ImageInWords (IIW), a carefully designed human-in-the-loop framework for curating hyper-detailed image descriptions. Human evaluations on IIW data show major gains compared to recent datasets (+66%) and GPT-4V (+48%) across comprehensiveness, specificity, hallucinations, and more. We also show that fine-tuning with IIW data improves these metrics by +31% against models trained with prior work, even with only 9k samples. Lastly, we evaluate IIW models with text-to-image generation and vision-language reasoning tasks. Our generated descriptions result in the highest fidelity images, and boost compositional reasoning by up to 6% on ARO, SVO-Probes, and Winoground datasets. We release the IIW-Eval benchmark with human judgement labels, object and image-level annotations from our framework, and existing image caption datasets enriched via IIW-model.

pdf bib
Tell Me What’s Next: Textual Foresight for Generic UI Representations
Andrea Burns | Kate Saenko | Bryan Plummer
Findings of the Association for Computational Linguistics: ACL 2024

Mobile app user interfaces (UIs) are rich with action, text, structure, and image content that can be utilized to learn generic UI representations for tasks like automating user commands, summarizing content, and evaluating the accessibility of user interfaces. Prior work has learned strong visual representations with local or global captioning losses, but fails to retain both granularities.To combat this, we propose Textual Foresight, a novel pretraining objective for learning UI screen representations. Textual Foresight generates global text descriptions of future UI states given a current UI and local action taken. Our approach requires joint reasoning over elements and entire screens, resulting in improved UI features: on generation tasks, UI agents trained with Textual Foresight outperform state-of-the-art by 2% with 28x fewer images. We train with our newly constructed mobile app dataset, OpenApp, which results in the first public dataset for app UI representation learning. OpenApp enables new baselines, and we find Textual Foresight improves average task performance over them by 5.7% while having access to 2x less data.

2023

pdf bib
A Suite of Generative Tasks for Multi-Level Multimodal Webpage Understanding
Andrea Burns | Krishna Srinivasan | Joshua Ainslie | Geoff Brown | Bryan Plummer | Kate Saenko | Jianmo Ni | Mandy Guo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Webpages have been a rich, scalable resource for vision-language and language only tasks. Yet only pieces of webpages are kept in existing datasets: image-caption pairs, long text articles, or raw HTML, never all in one place. Webpage tasks have resultingly received little attention and structured image-text data left underused. To study multimodal webpage understanding, we introduce the Wikipedia Webpage suite (WikiWeb2M) containing 2M pages with all of the associated image, text, and structure data. We verify its utility on three generative tasks: page description generation, section summarization, and contextual image captioning. We design a novel attention mechanism Prefix Global, which selects the most relevant image and text content as global tokens to attend to the rest of the webpage for context. By using page structure to separate such tokens, it performs better than full attention with lower computational complexity. Extensive experiments show that the new data in WikiWeb2M improves task performance compared to prior work.