2024
pdf
bib
abs
Locally Biased Transformers Better Align with Human Reading Times
Andrea De Varda
|
Marco Marelli
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
Recent psycholinguistic theories emphasize the interdependence between linguistic expectations and memory limitations in human language processing. We modify the self-attention mechanism of a transformer model to simulate a lossy context representation, biasing the model’s predictions to give additional weight to the local linguistic context. We show that surprisal estimates from our locally-biased model generally provide a better fit to human psychometric data, underscoring the sensitivity of the human parser to local linguistic information.
2023
pdf
bib
abs
Scaling in Cognitive Modelling: a Multilingual Approach to Human Reading Times
Andrea de Varda
|
Marco Marelli
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Neural language models are increasingly valued in computational psycholinguistics, due to their ability to provide conditional probability distributions over the lexicon that are predictive of human processing times. Given the vast array of available models, it is of both theoretical and methodological importance to assess what features of a model influence its psychometric quality. In this work we focus on parameter size, showing that larger Transformer-based language models generate probabilistic estimates that are less predictive of early eye-tracking measurements reflecting lexical access and early semantic integration. However, relatively bigger models show an advantage in capturing late eye-tracking measurements that reflect the full semantic and syntactic integration of a word into the current language context. Our results are supported by eye movement data in ten languages and consider four models, spanning from 564M to 4.5B parameters.
2022
pdf
bib
abs
The Effects of Surprisal across Languages: Results from Native and Non-native Reading
Andrea de Varda
|
Marco Marelli
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022
It is well known that the surprisal of an upcoming word, as estimated by language models, is a solid predictor of reading times (Smith and Levy, 2013). However, most of the studies that support this view are based on English and few other Germanic languages, leaving an open question as to the cross-lingual generalizability of such findings. Moreover, they tend to consider only the best-performing eye-tracking measure, which might conflate the effects of predictive and integrative processing. Furthermore, it is not clear whether prediction plays a role in non-native language processing in bilingual individuals (Grüter et al., 2014). We approach these problems at large scale, extracting surprisal estimates from mBERT, and assessing their psychometric predictive power on the MECO corpus, a cross-linguistic dataset of eye movement behavior in reading (Siegelman et al., 2022; Kuperman et al., 2020). We show that surprisal is a strong predictor of reading times across languages and fixation measurements, and that its effects in L2 are weaker with respect to L1.
pdf
bib
abs
Multilingualism Encourages Recursion: a Transfer Study with mBERT
Andrea De Varda
|
Roberto Zamparelli
Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP
The present work constitutes an attempt to investigate the relational structures learnt by mBERT, a multilingual transformer-based network, with respect to different cross-linguistic regularities proposed in the fields of theoretical and quantitative linguistics. We pursued this objective by relying on a zero-shot transfer experiment, evaluating the model’s ability to generalize its native task to artificial languages that could either respect or violate some proposed language universal, and comparing its performance to the output of BERT, a monolingual model with an identical configuration. We created four artificial corpora through a Probabilistic Context-Free Grammar by manipulating the distribution of tokens and the structure of their dependency relations. We showed that while both models were favoured by a Zipfian distribution of the tokens and by the presence of head-dependency type structures, the multilingual transformer network exhibited a stronger reliance on hierarchical cues compared to its monolingual counterpart.