Andrea Zecca
2024
MAMKit: A Comprehensive Multimodal Argument Mining Toolkit
Eleonora Mancini
|
Federico Ruggeri
|
Stefano Colamonaco
|
Andrea Zecca
|
Samuele Marro
|
Paolo Torroni
Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)
Multimodal Argument Mining (MAM) is a recent area of research aiming to extend argument analysis and improve discourse understanding by incorporating multiple modalities. Initial results confirm the importance of paralinguistic cues in this field. However, the research community still lacks a comprehensive platform where results can be easily reproduced, and methods and models can be stored, compared, and tested against a variety of benchmarks. To address these challenges, we propose MAMKit, an open, publicly available, PyTorch toolkit that consolidates datasets and models, providing a standardized platform for experimentation. MAMKit also includes some new baselines, designed to stimulate research on text and audio encoding and fusion for MAM tasks. Our initial results with MAMKit indicate that advancements in MAM require novel annotation processes to encompass auditory cues effectively.