Crossword puzzles are popular linguistic games often used as tools to engage students in learning. Educational crosswords are characterized by less cryptic and more factual clues that distinguish them from traditional crossword puzzles. Despite there exist several publicly available clue-answer pair databases for traditional crosswords, educational clue-answer pairs datasets are missing. In this article, we propose a methodology to build educational clue generation datasets that can be used to instruct Large Language Models (LLMs). By gathering from Wikipedia pages informative content associated with relevant keywords, we use Large Language Models to automatically generate pedagogical clues related to the given input keyword and its context. With such an approach, we created clue-instruct, a dataset containing 44,075 unique examples with text-keyword pairs associated with three distinct crossword clues. We used clue-instruct to instruct different LLMs to generate educational clues from a given input content and keyword. Both human and automatic evaluations confirmed the quality of the generated clues, thus validating the effectiveness of our approach.
To reduce the inference cost of large language models, model compression is increasingly used to create smaller scalable models. However, little is known about their robustness to minority subgroups defined by the labels and attributes of a dataset. In this paper, we investigate the effects of 18 different compression methods and settings on the subgroup robustness of BERT language models. We show that worst-group performance does not depend on model size alone, but also on the compression method used. Additionally, we find that model compression does not always worsen the performance on minority subgroups. Altogether, our analysis serves to further research into the subgroup robustness of model compression.
Albeit Natural Language Processing has seen major breakthroughs in the last few years, transferring such advances into real-world business cases can be challenging. One of the reasons resides in the displacement between popular benchmarks and actual data. Lack of supervision, unbalanced classes, noisy data and long documents often affect real problems in vertical domains such as finance, law and health. To support industry-oriented research, we present BUSTER, a BUSiness Transaction Entity Recognition dataset. The dataset consists of 3779 manually annotated documents on financial transactions. We establish several baselines exploiting both general-purpose and domain-specific language models. The best performing model is also used to automatically annotate 6196 documents, which we release as an additional silver corpus to BUSTER.
Large Language Models have proven highly successful at modelling a variety of tasks. However, this comes at a steep computational cost that hinders wider industrial uptake. In this paper, we present MWT: a Multi-Word Tokenizer that goes beyond word boundaries by representing frequent multi-word expressions as single tokens. MWTs produce a more compact and efficient tokenization that yields two benefits: (1) Increase in performance due to a greater coverage of input data given a fixed sequence length budget; (2) Faster and lighter inference due to the ability to reduce the sequence length with negligible drops in performance. Our results show that MWT is more robust across shorter sequence lengths, thus allowing for major speedups via early sequence truncation.
Real-world business applications require a trade-off between language model performance and size. We propose a new method for model compression that relies on vocabulary transfer. We evaluate the method on various vertical domains and downstream tasks. Our results indicate that vocabulary transfer can be effectively used in combination with other compression techniques, yielding a significant reduction in model size and inference time while marginally compromising on performance.
Italian is a Romance language that has its roots in Vulgar Latin. The birth of the modern Italian started in Tuscany around the 14th century, and it is mainly attributed to the works of Dante Alighieri, Francesco Petrarca and Giovanni Boccaccio, who are among the most acclaimed authors of the medieval age in Tuscany. However, Italy has been characterized by a high variety of dialects, which are often loosely related to each other, due to the past fragmentation of the territory. Italian has absorbed influences from many of these dialects, as also from other languages due to dominion of portions of the country by other nations, such as Spain and France. In this work we present Vulgaris, a project aimed at studying a corpus of Italian textual resources from authors of different regions, ranging in a time period between 1200 and 1600. Each composition is associated to its author, and authors are also grouped in families, i.e. sharing similar stylistic/chronological characteristics. Hence, the dataset is not only a valuable resource for studying the diachronic evolution of Italian and the differences between its dialects, but it is also useful to investigate stylistic aspects between single authors. We provide a detailed statistical analysis of the data, and a corpus-driven study in dialectology and diachronic varieties.