Andrew Lampinen


2023

pdf bib
Know your audience: specializing grounded language models with listener subtraction
Aaditya K Singh | David Ding | Andrew Saxe | Felix Hill | Andrew Lampinen
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Effective communication requires adapting to the idiosyncrasies of each communicative context—such as the common ground shared with each partner. Humans demonstrate this ability to specialize to their audience in many contexts, such as the popular game Dixit. We take inspiration from Dixit to formulate a multi-agent image reference game where a (trained) speaker model is rewarded for describing a target image such that one (pretrained) listener model can correctly identify it among distractors, but another listener cannot. To adapt, the speaker must exploit differences in the knowledge it shares with the different listeners. We show that finetuning an attention-based adapter between a CLIP vision encoder and a large language model in this contrastive, multi-agent setting gives rise to context-dependent natural language specialization from rewards only, without direct supervision. Through controlled experiments, we show that training a speaker with two listeners that perceive differently, using our method, allows the speaker to adapt to the idiosyncracies of the listeners. Furthermore, we show zero-shot transfer of the specialization to real-world data. Our experiments demonstrate a method for specializing grounded language models without direct supervision and highlight the interesting research challenges posed by complex multi-agent communication.

pdf bib
Symbol tuning improves in-context learning in language models
Jerry Wei | Le Hou | Andrew Lampinen | Xiangning Chen | Da Huang | Yi Tay | Xinyun Chen | Yifeng Lu | Denny Zhou | Tengyu Ma | Quoc Le
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We present symbol tuning - finetuning language models on in-context input-label pairs where natural language labels (e.g., “positive/negative sentiment”) are replaced with arbitrary symbols (e.g., “foo/bar”). Symbol tuning leverages the intuition that when a model cannot use instructions or natural language labels to figure out a task, it must instead do so by learning the input-label mappings. We experiment with symbol tuning across PaLM models up to 540B parameters and observe benefits across various settings. First, symbol tuning boosts performance on unseen in-context learning tasks and is much more robust to underspecified prompts, such as those without instructions or without natural language labels. Second, symbol-tuned models are much stronger at algorithmic reasoning tasks, with up to 18.2% better performance on the List Functions benchmark and up to 15.3% better performance on the Simple Turing Concepts benchmark. Finally, symbol-tuned models show large improvements in following flipped-labels presented in-context, meaning that they are more capable of using in-context information to override prior knowledge.

2022

pdf bib
Can language models learn from explanations in context?
Andrew Lampinen | Ishita Dasgupta | Stephanie Chan | Kory Mathewson | Mh Tessler | Antonia Creswell | James McClelland | Jane Wang | Felix Hill
Findings of the Association for Computational Linguistics: EMNLP 2022

Language Models (LMs) can perform new tasks by adapting to a few in-context examples. For humans, explanations that connect examples to task principles can improve learning. We therefore investigate whether explanations of few-shot examples can help LMs. We annotate questions from 40 challenging tasks with answer explanations, and various matched control explanations. We evaluate how different types of explanations, instructions, and controls affect zero- and few-shot performance. We analyze these results using statistical multilevel modeling techniques that account for the nested dependencies among conditions, tasks, prompts, and models. We find that explanations can improve performance—even without tuning. Furthermore, explanations hand-tuned for performance on a small validation set offer substantially larger benefits, and building a prompt by selecting examples and explanations together substantially improves performance over selecting examples alone. Finally, even untuned explanations outperform carefully matched controls, suggesting that the benefits are due to the link between an example and its explanation, rather than lower-level features. However, only large models benefit. In summary, explanations can support the in-context learning of large LMs on challenging tasks.