Andrew O. Arnold


2021

pdf bib
Answering Ambiguous Questions through Generative Evidence Fusion and Round-Trip Prediction
Yifan Gao | Henghui Zhu | Patrick Ng | Cicero Nogueira dos Santos | Zhiguo Wang | Feng Nan | Dejiao Zhang | Ramesh Nallapati | Andrew O. Arnold | Bing Xiang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In open-domain question answering, questions are highly likely to be ambiguous because users may not know the scope of relevant topics when formulating them. Therefore, a system needs to find possible interpretations of the question, and predict one or multiple plausible answers. When multiple plausible answers are found, the system should rewrite the question for each answer to resolve the ambiguity. In this paper, we present a model that aggregates and combines evidence from multiple passages to adaptively predict a single answer or a set of question-answer pairs for ambiguous questions. In addition, we propose a novel round-trip prediction approach to iteratively generate additional interpretations that our model fails to find in the first pass, and then verify and filter out the incorrect question-answer pairs to arrive at the final disambiguated output. Our model, named Refuel, achieves a new state-of-the-art performance on the AmbigQA dataset, and shows competitive performance on NQ-Open and TriviaQA. The proposed round-trip prediction is a model-agnostic general approach for answering ambiguous open-domain questions, which improves our Refuel as well as several baseline models. We release source code for our models and experiments at https://github.com/amzn/refuel-open-domain-qa.

pdf bib
Improving Factual Consistency of Abstractive Summarization via Question Answering
Feng Nan | Cicero Nogueira dos Santos | Henghui Zhu | Patrick Ng | Kathleen McKeown | Ramesh Nallapati | Dejiao Zhang | Zhiguo Wang | Andrew O. Arnold | Bing Xiang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

A commonly observed problem with the state-of-the art abstractive summarization models is that the generated summaries can be factually inconsistent with the input documents. The fact that automatic summarization may produce plausible-sounding yet inaccurate summaries is a major concern that limits its wide application. In this paper we present an approach to address factual consistency in summarization. We first propose an efficient automatic evaluation metric to measure factual consistency; next, we propose a novel learning algorithm that maximizes the proposed metric during model training. Through extensive experiments, we confirm that our method is effective in improving factual consistency and even overall quality of the summaries, as judged by both automatic metrics and human evaluation.

pdf bib
Pairwise Supervised Contrastive Learning of Sentence Representations
Dejiao Zhang | Shang-Wen Li | Wei Xiao | Henghui Zhu | Ramesh Nallapati | Andrew O. Arnold | Bing Xiang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Many recent successes in sentence representation learning have been achieved by simply fine-tuning on the Natural Language Inference (NLI) datasets with triplet loss or siamese loss. Nevertheless, they share a common weakness: sentences in a contradiction pair are not necessarily from different semantic categories. Therefore, optimizing the semantic entailment and contradiction reasoning objective alone is inadequate to capture the high-level semantic structure. The drawback is compounded by the fact that the vanilla siamese or triplet losses only learn from individual sentence pairs or triplets, which often suffer from bad local optima. In this paper, we propose PairSupCon, an instance discrimination based approach aiming to bridge semantic entailment and contradiction understanding with high-level categorical concept encoding. We evaluate PairSupCon on various downstream tasks that involve understanding sentence semantics at different granularities. We outperform the previous state-of-the-art method with 10%–13% averaged improvement on eight clustering tasks, and 5%–6% averaged improvement on seven semantic textual similarity (STS) tasks.

pdf bib
Contrastive Fine-tuning Improves Robustness for Neural Rankers
Xiaofei Ma | Cicero Nogueira dos Santos | Andrew O. Arnold
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Supporting Clustering with Contrastive Learning
Dejiao Zhang | Feng Nan | Xiaokai Wei | Shang-Wen Li | Henghui Zhu | Kathleen McKeown | Ramesh Nallapati | Andrew O. Arnold | Bing Xiang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Unsupervised clustering aims at discovering the semantic categories of data according to some distance measured in the representation space. However, different categories often overlap with each other in the representation space at the beginning of the learning process, which poses a significant challenge for distance-based clustering in achieving good separation between different categories. To this end, we propose Supporting Clustering with Contrastive Learning (SCCL) – a novel framework to leverage contrastive learning to promote better separation. We assess the performance of SCCL on short text clustering and show that SCCL significantly advances the state-of-the-art results on most benchmark datasets with 3%-11% improvement on Accuracy and 4%-15% improvement on Normalized Mutual Information. Furthermore, our quantitative analysis demonstrates the effectiveness of SCCL in leveraging the strengths of both bottom-up instance discrimination and top-down clustering to achieve better intra-cluster and inter-cluster distances when evaluated with the ground truth cluster labels.