Andy Coenen


2022

pdf bib
A Recipe for Arbitrary Text Style Transfer with Large Language Models
Emily Reif | Daphne Ippolito | Ann Yuan | Andy Coenen | Chris Callison-Burch | Jason Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

In this paper, we leverage large language models (LLMs) to perform zero-shot text style transfer. We present a prompting method that we call augmented zero-shot learning, which frames style transfer as a sentence rewriting task and requires only a natural language instruction, without model fine-tuning or exemplars in the target style. Augmented zero-shot learning is simple and demonstrates promising results not just on standard style transfer tasks such as sentiment, but also on arbitrary transformations such as ‘make this melodramatic’ or ‘insert a metaphor.’

pdf bib
The Case for a Single Model that can Both Generate Continuations and Fill-in-the-Blank
Daphne Ippolito | Liam Dugan | Emily Reif | Ann Yuan | Andy Coenen | Chris Callison-Burch
Findings of the Association for Computational Linguistics: NAACL 2022

The task of inserting text into a specified position in a passage, known as fill in the blank (FitB), is useful for a variety of applications where writers interact with a natural language generation (NLG) system to craft text. While previous work has tackled this problem with models trained specifically to do fill in the blank, a more useful model is one that can effectively perform _both_ FitB and continuation tasks. In this work, we evaluate the feasibility of using a single model to do both tasks. We show that models pre-trained with a FitB-style objective are capable of both tasks, while models pre-trained for continuation are not. Finally, we show how these models can be easily finetuned to allow for fine-grained control over the length and word choice of the generation.

2020

pdf bib
The Language Interpretability Tool: Extensible, Interactive Visualizations and Analysis for NLP Models
Ian Tenney | James Wexler | Jasmijn Bastings | Tolga Bolukbasi | Andy Coenen | Sebastian Gehrmann | Ellen Jiang | Mahima Pushkarna | Carey Radebaugh | Emily Reif | Ann Yuan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present the Language Interpretability Tool (LIT), an open-source platform for visualization and understanding of NLP models. We focus on core questions about model behavior: Why did my model make this prediction? When does it perform poorly? What happens under a controlled change in the input? LIT integrates local explanations, aggregate analysis, and counterfactual generation into a streamlined, browser-based interface to enable rapid exploration and error analysis. We include case studies for a diverse set of workflows, including exploring counterfactuals for sentiment analysis, measuring gender bias in coreference systems, and exploring local behavior in text generation. LIT supports a wide range of models—including classification, seq2seq, and structured prediction—and is highly extensible through a declarative, framework-agnostic API. LIT is under active development, with code and full documentation available at https://github.com/pair-code/lit.