Angrosh Mandya

Also published as: Mandya Angrosh


pdf bib
Graph Convolution over Multiple Dependency Sub-graphs for Relation Extraction
Angrosh Mandya | Danushka Bollegala | Frans Coenen
Proceedings of the 28th International Conference on Computational Linguistics

We propose a contextualised graph convolution network over multiple dependency-based sub-graphs for relation extraction. A novel method to construct multiple sub-graphs using words in shortest dependency path and words linked to entities in the dependency parse is proposed. Graph convolution operation is performed over the resulting multiple sub-graphs to obtain more informative features useful for relation extraction. Our experimental results show that the proposed method achieves superior performance over the existing GCN-based models achieving state-of-the-art performance on cross-sentence n-ary relation extraction dataset and SemEval 2010 Task 8 sentence-level relation extraction dataset. Our model also achieves a comparable performance to the SoTA on the TACRED dataset.

pdf bib
Do not let the history haunt you: Mitigating Compounding Errors in Conversational Question Answering
Angrosh Mandya | James O’ Neill | Danushka Bollegala | Frans Coenen
Proceedings of the 12th Language Resources and Evaluation Conference

The Conversational Question Answering (CoQA) task involves answering a sequence of inter-related conversational questions about a contextual paragraph. Although existing approaches employ human-written ground-truth answers for answering conversational questions at test time, in a realistic scenario, the CoQA model will not have any access to ground-truth answers for the previous questions, compelling the model to rely upon its own previously predicted answers for answering the subsequent questions. In this paper, we find that compounding errors occur when using previously predicted answers at test time, significantly lowering the performance of CoQA systems. To solve this problem, we propose a sampling strategy that dynamically selects between target answers and model predictions during training, thereby closely simulating the situation at test time. Further, we analyse the severity of this phenomena as a function of the question type, conversation length and domain type.


pdf bib
A Dataset for Inter-Sentence Relation Extraction using Distant Supervision
Angrosh Mandya | Danushka Bollegala | Frans Coenen | Katie Atkinson
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)


pdf bib
Scrutable Feature Sets for Stance Classification
Angrosh Mandya | Advaith Siddharthan | Adam Wyner
Proceedings of the Third Workshop on Argument Mining (ArgMining2016)


pdf bib
Lexico-syntactic text simplification and compression with typed dependencies
Mandya Angrosh | Tadashi Nomoto | Advaith Siddharthan
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf bib
Text simplification using synchronous dependency grammars: Generalising automatically harvested rules
Mandya Angrosh | Advaith Siddharthan
Proceedings of the 8th International Natural Language Generation Conference (INLG)

pdf bib
Hybrid text simplification using synchronous dependency grammars with hand-written and automatically harvested rules
Advaith Siddharthan | Angrosh Mandya
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics