Anh Tuan Luu


2021

pdf bib
Enriching and Controlling Global Semantics for Text Summarization
Thong Nguyen | Anh Tuan Luu | Truc Lu | Tho Quan
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recently, Transformer-based models have been proven effective in the abstractive summarization task by creating fluent and informative summaries. Nevertheless, these models still suffer from the short-range dependency problem, causing them to produce summaries that miss the key points of document. In this paper, we attempt to address this issue by introducing a neural topic model empowered with normalizing flow to capture the global semantics of the document, which are then integrated into the summarization model. In addition, to avoid the overwhelming effect of global semantics on contextualized representation, we introduce a mechanism to control the amount of global semantics supplied to the text generation module. Our method outperforms state-of-the-art summarization models on five common text summarization datasets, namely CNN/DailyMail, XSum, Reddit TIFU, arXiv, and PubMed.

2020

pdf bib
Would you Rather? A New Benchmark for Learning Machine Alignment with Cultural Values and Social Preferences
Yi Tay | Donovan Ong | Jie Fu | Alvin Chan | Nancy Chen | Anh Tuan Luu | Chris Pal
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Understanding human preferences, along with cultural and social nuances, lives at the heart of natural language understanding. Concretely, we present a new task and corpus for learning alignments between machine and human preferences. Our newly introduced problem is concerned with predicting the preferable options from two sentences describing scenarios that may involve social and cultural situations. Our problem is framed as a natural language inference task with crowd-sourced preference votes by human players, obtained from a gamified voting platform. We benchmark several state-of-the-art neural models, along with BERT and friends on this task. Our experimental results show that current state-of-the-art NLP models still leave much room for improvement.

2019

pdf bib
Lightweight and Efficient Neural Natural Language Processing with Quaternion Networks
Yi Tay | Aston Zhang | Anh Tuan Luu | Jinfeng Rao | Shuai Zhang | Shuohang Wang | Jie Fu | Siu Cheung Hui
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quaternion algebra and hypercomplex spaces, enabling not only expressive inter-component interactions but also significantly (75%) reduced parameter size due to lesser degrees of freedom in the Hamilton product. We propose Quaternion variants of models, giving rise to new architectures such as the Quaternion attention Model and Quaternion Transformer. Extensive experiments on a battery of NLP tasks demonstrates the utility of proposed Quaternion-inspired models, enabling up to 75% reduction in parameter size without significant loss in performance.

pdf bib
Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives
Yi Tay | Shuohang Wang | Anh Tuan Luu | Jie Fu | Minh C. Phan | Xingdi Yuan | Jinfeng Rao | Siu Cheung Hui | Aston Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by 51% relative improvement on BLEU-4 and 17% relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.

2018

pdf bib
Reasoning with Sarcasm by Reading In-Between
Yi Tay | Anh Tuan Luu | Siu Cheung Hui | Jian Su
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Sarcasm is a sophisticated speech act which commonly manifests on social communities such as Twitter and Reddit. The prevalence of sarcasm on the social web is highly disruptive to opinion mining systems due to not only its tendency of polarity flipping but also usage of figurative language. Sarcasm commonly manifests with a contrastive theme either between positive-negative sentiments or between literal-figurative scenarios. In this paper, we revisit the notion of modeling contrast in order to reason with sarcasm. More specifically, we propose an attention-based neural model that looks in-between instead of across, enabling it to explicitly model contrast and incongruity. We conduct extensive experiments on six benchmark datasets from Twitter, Reddit and the Internet Argument Corpus. Our proposed model not only achieves state-of-the-art performance on all datasets but also enjoys improved interpretability.

pdf bib
Compare, Compress and Propagate: Enhancing Neural Architectures with Alignment Factorization for Natural Language Inference
Yi Tay | Anh Tuan Luu | Siu Cheung Hui
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

This paper presents a new deep learning architecture for Natural Language Inference (NLI). Firstly, we introduce a new architecture where alignment pairs are compared, compressed and then propagated to upper layers for enhanced representation learning. Secondly, we adopt factorization layers for efficient and expressive compression of alignment vectors into scalar features, which are then used to augment the base word representations. The design of our approach is aimed to be conceptually simple, compact and yet powerful. We conduct experiments on three popular benchmarks, SNLI, MultiNLI and SciTail, achieving competitive performance on all. A lightweight parameterization of our model also enjoys a 3 times reduction in parameter size compared to the existing state-of-the-art models, e.g., ESIM and DIIN, while maintaining competitive performance. Additionally, visual analysis shows that our propagated features are highly interpretable.

pdf bib
Multi-Granular Sequence Encoding via Dilated Compositional Units for Reading Comprehension
Yi Tay | Anh Tuan Luu | Siu Cheung Hui
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Sequence encoders are crucial components in many neural architectures for learning to read and comprehend. This paper presents a new compositional encoder for reading comprehension (RC). Our proposed encoder is not only aimed at being fast but also expressive. Specifically, the key novelty behind our encoder is that it explicitly models across multiple granularities using a new dilated composition mechanism. In our approach, gating functions are learned by modeling relationships and reasoning over multi-granular sequence information, enabling compositional learning that is aware of both long and short term information. We conduct experiments on three RC datasets, showing that our proposed encoder demonstrates very promising results both as a standalone encoder as well as a complementary building block. Empirical results show that simple Bi-Attentive architectures augmented with our proposed encoder not only achieves state-of-the-art / highly competitive results but is also considerably faster than other published works.

pdf bib
Attentive Gated Lexicon Reader with Contrastive Contextual Co-Attention for Sentiment Classification
Yi Tay | Anh Tuan Luu | Siu Cheung Hui | Jian Su
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

This paper proposes a new neural architecture that exploits readily available sentiment lexicon resources. The key idea is that that incorporating a word-level prior can aid in the representation learning process, eventually improving model performance. To this end, our model employs two distinctly unique components, i.e., (1) we introduce a lexicon-driven contextual attention mechanism to imbue lexicon words with long-range contextual information and (2), we introduce a contrastive co-attention mechanism that models contrasting polarities between all positive and negative words in a sentence. Via extensive experiments, we show that our approach outperforms many other neural baselines on sentiment classification tasks on multiple benchmark datasets.

pdf bib
Co-Stack Residual Affinity Networks with Multi-level Attention Refinement for Matching Text Sequences
Yi Tay | Anh Tuan Luu | Siu Cheung Hui
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Learning a matching function between two text sequences is a long standing problem in NLP research. This task enables many potential applications such as question answering and paraphrase identification. This paper proposes Co-Stack Residual Affinity Networks (CSRAN), a new and universal neural architecture for this problem. CSRAN is a deep architecture, involving stacked (multi-layered) recurrent encoders. Stacked/Deep architectures are traditionally difficult to train, due to the inherent weaknesses such as difficulty with feature propagation and vanishing gradients. CSRAN incorporates two novel components to take advantage of the stacked architecture. Firstly, it introduces a new bidirectional alignment mechanism that learns affinity weights by fusing sequence pairs across stacked hierarchies. Secondly, it leverages a multi-level attention refinement component between stacked recurrent layers. The key intuition is that, by leveraging information across all network hierarchies, we can not only improve gradient flow but also improve overall performance. We conduct extensive experiments on six well-studied text sequence matching datasets, achieving state-of-the-art performance on all.

2016

pdf bib
Learning Term Embeddings for Taxonomic Relation Identification Using Dynamic Weighting Neural Network
Anh Tuan Luu | Yi Tay | Siu Cheung Hui | See Kiong Ng
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

2015

pdf bib
Incorporating Trustiness and Collective Synonym/Contrastive Evidence into Taxonomy Construction
Anh Tuan Luu | Jung-jae Kim | See Kiong Ng
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf bib
Taxonomy Construction Using Syntactic Contextual Evidence
Anh Tuan Luu | Jung-jae Kim | See Kiong Ng
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)