Anil Bandhakavi


2024

pdf bib
Intent-conditioned and Non-toxic Counterspeech Generation using Multi-Task Instruction Tuning with RLAIF
Amey Hengle | Aswini Padhi | Sahajpreet Singh | Anil Bandhakavi | Md Shad Akhtar | Tanmoy Chakraborty
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Counterspeech, defined as a response to mitigate online hate speech, is increasingly used as a non-censorial solution. The effectiveness of addressing hate speech involves dispelling the stereotypes, prejudices, and biases often subtly implied in brief, single-sentence statements or abuses. These expressions challenge language models, especially in seq2seq tasks, as model performance typically excels with longer contexts. Our study introduces CoARL, a novel framework enhancing counterspeech generation by modeling the pragmatic implications underlying social biases in hateful statements. The first two phases of CoARL involve sequential multi-instruction tuning, teaching the model to understand intents, reactions, and harms of offensive statements, and then learning task-specific low-rank adapter weights for generating intent-conditioned counterspeech. The final phase uses reinforcement learning to fine-tune outputs for effectiveness and nontoxicity. CoARL outperforms existing benchmarks in intent-conditioned counterspeech generation, showing an average improvement of ∼3 points in intent-conformity and ∼4 points in argument-quality metrics. Extensive human evaluation supports CoARL’s efficacy in generating superior and more context-appropriate responses compared to existing systems, including prominent LLMs like ChatGPT.

2023

pdf bib
Counterspeeches up my sleeve! Intent Distribution Learning and Persistent Fusion for Intent-Conditioned Counterspeech Generation
Rishabh Gupta | Shaily Desai | Manvi Goel | Anil Bandhakavi | Tanmoy Chakraborty | Md. Shad Akhtar
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Counterspeech has been demonstrated to be an efficacious approach for combating hate speech. While various conventional and controlled approaches have been studied in recent years to generate counterspeech, a counterspeech with a certain intent may not be sufficient in every scenario. Due to the complex and multifaceted nature of hate speech, utilizing multiple forms of counter-narratives with varying intents may be advantageous in different circumstances. In this paper, we explore intent-conditioned counterspeech generation. At first, we develop IntentCONAN, a diversified intent-specific counterspeech dataset with 6831 counterspeeches conditioned on five intents, i.e., informative, denouncing, question, positive, and humour. Subsequently, we propose QUARC, a two-stage framework for intent-conditioned counterspeech generation. QUARC leverages vector-quantized representations learned for each intent category along with PerFuMe, a novel fusion module to incorporate intent-specific information into the model. Our evaluation demonstrates that QUARC outperforms several baselines by an average of ~10% across evaluation metrics. An extensive human evaluation supplements our hypothesis of better and more appropriate responses than comparative systems.

2014

pdf bib
Generating a Word-Emotion Lexicon from #Emotional Tweets
Anil Bandhakavi | Nirmalie Wiratunga | Deepak P | Stewart Massie
Proceedings of the Third Joint Conference on Lexical and Computational Semantics (*SEM 2014)