Anil Ramakrishna


pdf bib
Correcting Language Model Outputs by Editing Salient Layers
Kshitij Mishra | Tamer Soliman | Anil Ramakrishna | Aram Galstyan | Anoop Kumar
Findings of the Association for Computational Linguistics: EACL 2024

Large language models can accumulate incorrect or outdated knowledge as the real world evolves. Compared to typical solutions such as retraining, retrieval augmented generation, model editing offers an effective yet low cost solution to address this issue. However, existing model editing algorithms employ manual selection of edit layers, which requires prior domain knowledge or expensive architecture-specific empirical layer selection methods, such as causal tracing. In this work, we propose SaLEM (Salient Layers Editing Model), an efficient solution for data driven layer selection for the model editing task. Our solution utilizes layer-wise saliency maps for layer selection, and matches the accuracy of prior approaches but with only 1/3 of their edits, enabling efficient updates to the parametric knowledge in large language models.


pdf bib
INVITE: a Testbed of Automatically Generated Invalid Questions to Evaluate Large Language Models for Hallucinations
Anil Ramakrishna | Rahul Gupta | Jens Lehmann | Morteza Ziyadi
Findings of the Association for Computational Linguistics: EMNLP 2023

Recent advancements in Large language models (LLMs) have enabled them to hold free form conversations over multiple turns, but they exhibit a tendency to make unfounded and incorrect statements, commonly known as hallucinations. In particular, LLMs hallucinate frequently when given invalid questions, i.e. ones with incorrect assumptions. The most common approach to evaluate LLMs on hallucinations is to test them on Question Answering (QA) test sets such as TruthfulQA. However, LLMs are increasingly pretrained on massive text corpora scraped from the Internet, which may inevitably expose these test sets to the model during training, leading eventually to an overestimation of model performances on these test sets. In this work, we present an alternative framework to address this risk and to foster further research towards making LLMs robust against invalid questions. We name our framework INVITE: a testbed of automatically generated INValId questions to evaluaTE large language models for hallucinations. In each instantiation, our framework is set up to create a fresh batch of invalid questions by distorting valid facts in which subjects or objects are replaced by similar entities. We evaluate several state of the art LLMs against a testset generated by our framework and highlight its capacity to trigger hallucinations in these models.


pdf bib
Improving Large-Scale Conversational Assistants using Model Interpretation based Training Sample Selection
Stefan Schroedl | Manoj Kumar | Kiana Hajebi | Morteza Ziyadi | Sriram Venkatapathy | Anil Ramakrishna | Rahul Gupta | Pradeep Natarajan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

This paper presents an approach to identify samples from live traffic where the customer implicitly communicated satisfaction with Alexa’s responses, by leveraging interpretations of model behavior. Such customer signals are noisy and adding a large number of samples from live traffic to training set makes re-training infeasible. Our work addresses these challenges by identifying a small number of samples that grow training set by ~0.05% while producing statistically significant improvements in both offline and online tests.

pdf bib
Federated Learning with Noisy User Feedback
Rahul Sharma | Anil Ramakrishna | Ansel MacLaughlin | Anna Rumshisky | Jimit Majmudar | Clement Chung | Salman Avestimehr | Rahul Gupta
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Machine Learning (ML) systems are getting increasingly popular, and drive more and more applications and services in our daily life. Thishas led to growing concerns over user privacy, since human interaction data typically needs to be transmitted to the cloud in order to trainand improve such systems. Federated learning (FL) has recently emerged as a method for training ML models on edge devices using sensitive user data and is seen as a way to mitigate concerns over data privacy. However, since ML models are most commonly trained with label supervision, we need a way to extract labels on edge to make FL viable. In this work, we propose a strategy for training FL models using positive and negative user feedback. We also design a novel framework to study different noise patterns in user feedback, and explore how well standard noise-robust objectives can help mitigate this noise when training models in a federated setting. We evaluate our proposed training setup through detailed experiments on two text classification datasets and analyze the effects of varying levels of user reliability and feedback noise on model performance. We show that our method improves substantially over a self-training baseline, achieving performance closer to models trained with full supervision.


pdf bib
Towards Realistic Single-Task Continuous Learning Research for NER
Justin Payan | Yuval Merhav | He Xie | Satyapriya Krishna | Anil Ramakrishna | Mukund Sridhar | Rahul Gupta
Findings of the Association for Computational Linguistics: EMNLP 2021

There is an increasing interest in continuous learning (CL), as data privacy is becoming a priority for real-world machine learning applications. Meanwhile, there is still a lack of academic NLP benchmarks that are applicable for realistic CL settings, which is a major challenge for the advancement of the field. In this paper we discuss some of the unrealistic data characteristics of public datasets, study the challenges of realistic single-task continuous learning as well as the effectiveness of data rehearsal as a way to mitigate accuracy loss. We construct a CL NER dataset from an existing publicly available dataset and release it along with the code to the research community.

pdf bib
Proceedings of the First Workshop on Trustworthy Natural Language Processing
Yada Pruksachatkun | Anil Ramakrishna | Kai-Wei Chang | Satyapriya Krishna | Jwala Dhamala | Tanaya Guha | Xiang Ren
Proceedings of the First Workshop on Trustworthy Natural Language Processing


pdf bib
Linguistic analysis of differences in portrayal of movie characters
Anil Ramakrishna | Victor R. Martínez | Nikolaos Malandrakis | Karan Singla | Shrikanth Narayanan
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We examine differences in portrayal of characters in movies using psycholinguistic and graph theoretic measures computed directly from screenplays. Differences are examined with respect to characters’ gender, race, age and other metadata. Psycholinguistic metrics are extrapolated to dialogues in movies using a linear regression model built on a set of manually annotated seed words. Interesting patterns are revealed about relationships between genders of production team and the gender ratio of characters. Several correlations are noted between gender, race, age of characters and the linguistic metrics.


pdf bib
A quantitative analysis of gender differences in movies using psycholinguistic normatives
Anil Ramakrishna | Nikolaos Malandrakis | Elizabeth Staruk | Shrikanth Narayanan
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing