Anirban Laha


2019

pdf bib
Scalable Micro-planned Generation of Discourse from Structured Data
Anirban Laha | Parag Jain | Abhijit Mishra | Karthik Sankaranarayanan
Computational Linguistics, Volume 45, Issue 4 - December 2019

We present a framework for generating natural language description from structured data such as tables; the problem comes under the category of data-to-text natural language generation (NLG). Modern data-to-text NLG systems typically use end-to-end statistical and neural architectures that learn from a limited amount of task-specific labeled data, and therefore exhibit limited scalability, domain-adaptability, and interpretability. Unlike these systems, ours is a modular, pipeline-based approach, and does not require task-specific parallel data. Rather, it relies on monolingual corpora and basic off-the-shelf NLP tools. This makes our system more scalable and easily adaptable to newer domains. Our system utilizes a three-staged pipeline that: (i) converts entries in the structured data to canonical form, (ii) generates simple sentences for each atomic entry in the canonicalized representation, and (iii) combines the sentences to produce a coherent, fluent, and adequate paragraph description through sentence compounding and co-reference replacement modules. Experiments on a benchmark mixed-domain data set curated for paragraph description from tables reveals the superiority of our system over existing data-to-text approaches. We also demonstrate the robustness of our system in accepting other popular data sets covering diverse data types such as knowledge graphs and key-value maps.

pdf bib
Unsupervised Neural Text Simplification
Sai Surya | Abhijit Mishra | Anirban Laha | Parag Jain | Karthik Sankaranarayanan
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

The paper presents a first attempt towards unsupervised neural text simplification that relies only on unlabeled text corpora. The core framework is composed of a shared encoder and a pair of attentional-decoders, crucially assisted by discrimination-based losses and denoising. The framework is trained using unlabeled text collected from en-Wikipedia dump. Our analysis (both quantitative and qualitative involving human evaluators) on public test data shows that the proposed model can perform text-simplification at both lexical and syntactic levels, competitive to existing supervised methods. It also outperforms viable unsupervised baselines. Adding a few labeled pairs helps improve the performance further.

pdf bib
Storytelling from Structured Data and Knowledge Graphs : An NLG Perspective
Abhijit Mishra | Anirban Laha | Karthik Sankaranarayanan | Parag Jain | Saravanan Krishnan
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

In this tutorial, we wish to cover the foundational, methodological, and system development aspects of translating structured data (such as data in tabular form) and knowledge bases (such as knowledge graphs) into natural language. The attendees of the tutorial will be able to take away from this tutorial, (1) the basic ideas around how modern NLP and NLG techniques could be applied to describe and summarize textual data in format that is non-linguistic in nature or has some structure, and (2) a few interesting open-ended questions, which could lead to significant research contributions in future. The tutorial aims to convey challenges and nuances in structured data translation, data representation techniques, and domain adaptable solutions for translation of the data into natural language form. Various solutions, starting from traditional rule based/heuristic driven and modern data-driven and ultra-modern deep-neural style architectures will be discussed, followed by a brief discussion on evaluation and quality estimation. A significant portion of the tutorial will be dedicated towards unsupervised, scalable, and adaptable solutions, given that systems for such an important task will never naturally enjoy sustainable large scale domain independent labeled (parallel) data.

2018

pdf bib
Generating Descriptions from Structured Data Using a Bifocal Attention Mechanism and Gated Orthogonalization
Preksha Nema | Shreyas Shetty | Parag Jain | Anirban Laha | Karthik Sankaranarayanan | Mitesh M. Khapra
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

In this work, we focus on the task of generating natural language descriptions from a structured table of facts containing fields (such as nationality, occupation, etc) and values (such as Indian, actor, director, etc). One simple choice is to treat the table as a sequence of fields and values and then use a standard seq2seq model for this task. However, such a model is too generic and does not exploit task specific characteristics. For example, while generating descriptions from a table, a human would attend to information at two levels: (i) the fields (macro level) and (ii) the values within the field (micro level). Further, a human would continue attending to a field for a few timesteps till all the information from that field has been rendered and then never return back to this field (because there is nothing left to say about it). To capture this behavior we use (i) a fused bifocal attention mechanism which exploits and combines this micro and macro level information and (ii) a gated orthogonalization mechanism which tries to ensure that a field is remembered for a few time steps and then forgotten. We experiment with a recently released dataset which contains fact tables about people and their corresponding one line biographical descriptions in English. In addition, we also introduce two similar datasets for French and German. Our experiments show that the proposed model gives 21% relative improvement over a recently proposed state of the art method and 10% relative improvement over basic seq2seq models. The code and the datasets developed as a part of this work are publicly available on https://github.com/PrekshaNema25/StructuredData_To_Descriptions

pdf bib
A Mixed Hierarchical Attention Based Encoder-Decoder Approach for Standard Table Summarization
Parag Jain | Anirban Laha | Karthik Sankaranarayanan | Preksha Nema | Mitesh M. Khapra | Shreyas Shetty
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Structured data summarization involves generation of natural language summaries from structured input data. In this work, we consider summarizing structured data occurring in the form of tables as they are prevalent across a wide variety of domains. We formulate the standard table summarization problem, which deals with tables conforming to a single predefined schema. To this end, we propose a mixed hierarchical attention based encoder-decoder model which is able to leverage the structure in addition to the content of the tables. Our experiments on the publicly available weathergov dataset show around 18 BLEU (around 30%) improvement over the current state-of-the-art.

2017

pdf bib
Diversity driven attention model for query-based abstractive summarization
Preksha Nema | Mitesh M. Khapra | Anirban Laha | Balaraman Ravindran
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Abstractive summarization aims to generate a shorter version of the document covering all the salient points in a compact and coherent fashion. On the other hand, query-based summarization highlights those points that are relevant in the context of a given query. The encode-attend-decode paradigm has achieved notable success in machine translation, extractive summarization, dialog systems, etc. But it suffers from the drawback of generation of repeated phrases. In this work we propose a model for the query-based summarization task based on the encode-attend-decode paradigm with two key additions (i) a query attention model (in addition to document attention model) which learns to focus on different portions of the query at different time steps (instead of using a static representation for the query) and (ii) a new diversity based attention model which aims to alleviate the problem of repeating phrases in the summary. In order to enable the testing of this model we introduce a new query-based summarization dataset building on debatepedia. Our experiments show that with these two additions the proposed model clearly outperforms vanilla encode-attend-decode models with a gain of 28% (absolute) in ROUGE-L scores.

2016

pdf bib
An Empirical Evaluation of various Deep Learning Architectures for Bi-Sequence Classification Tasks
Anirban Laha | Vikas Raykar
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Several tasks in argumentation mining and debating, question-answering, and natural language inference involve classifying a sequence in the context of another sequence (referred as bi-sequence classification). For several single sequence classification tasks, the current state-of-the-art approaches are based on recurrent and convolutional neural networks. On the other hand, for bi-sequence classification problems, there is not much understanding as to the best deep learning architecture. In this paper, we attempt to get an understanding of this category of problems by extensive empirical evaluation of 19 different deep learning architectures (specifically on different ways of handling context) for various problems originating in natural language processing like debating, textual entailment and question-answering. Following the empirical evaluation, we offer our insights and conclusions regarding the architectures we have considered. We also establish the first deep learning baselines for three argumentation mining tasks.