Anirudh S. Sundar
2024
mForms : Multimodal Form Filling with Question Answering
Larry Heck
|
Simon Heck
|
Anirudh S. Sundar
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
This paper presents a new approach to form-filling by reformulating the task as multimodal natural language Question Answering (QA). The reformulation is achieved by first translating the elements on the GUI form (text fields, buttons, icons, etc.) to natural language questions, where these questions capture the element’s multimodal semantics. After a match is determined between the form element (Question) and the user utterance (Answer), the form element is filled through a pre-trained extractive QA system. By leveraging pre-trained QA models and not requiring form-specific training, this approach to form-filling is zero-shot. The paper also presents an approach to further refine the form-filling by using multi-task training to incorporate a potentially large number of successive tasks. Finally, the paper introduces a multimodal natural language form-filling dataset Multimodal Forms (mForms), as well as a multimodal extension of the popular ATIS dataset to support future research and experimentation. Results show the new approach not only maintains robust accuracy for sparse training conditions but achieves state-of-the-art F1 of 0.97 on ATIS with approximately 1/10th the training data.
2023
cTBLS: Augmenting Large Language Models with Conversational Tables
Anirudh S. Sundar
|
Larry Heck
Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)
Optimizing accuracy and performance while eliminating hallucinations of open-domain conversational large language models (LLMs) is an open research challenge. A particularly promising direction is to augment and ground LLMs with information from structured sources. This paper introduces Conversational Tables cTBLS, a three-step architecture to retrieve and generate dialogue responses grounded on retrieved tabular information. cTBLS uses Transformer encoder embeddings for Dense Table Retrieval and obtains up to 125% relative improvement over the retriever in the previous state-of-the-art system on the HyrbiDialogue dataset. cTBLS then uses a shared process between encoder and decoder models to perform a coarse+fine tabular knowledge (e.g., cell) ranking combined with a GPT-3.5 LLM response generator to yield a 2x relative improvement in ROUGE scores. Finally, human evaluators prefer cTBLs +80% of the time (coherency, fluency) and judge informativeness to be 4x better than the previous state-of-the-art.