Anirudh Sriram
2022
Input-specific Attention Subnetworks for Adversarial Detection
Emil Biju
|
Anirudh Sriram
|
Pratyush Kumar
|
Mitesh Khapra
Findings of the Association for Computational Linguistics: ACL 2022
Self-attention heads are characteristic of Transformer models and have been well studied for interpretability and pruning. In this work, we demonstrate an altogether different utility of attention heads, namely for adversarial detection. Specifically, we propose a method to construct input-specific attention subnetworks (IAS) from which we extract three features to discriminate between authentic and adversarial inputs. The resultant detector significantly improves (by over 7.5%) the state-of-the-art adversarial detection accuracy for the BERT encoder on 10 NLU datasets with 11 different adversarial attack types. We also demonstrate that our method (a) is more accurate for larger models which are likely to have more spurious correlations and thus vulnerable to adversarial attack, and (b) performs well even with modest training sets of adversarial examples.
2020
Joint Transformer/RNN Architecture for Gesture Typing in Indic Languages
Emil Biju
|
Anirudh Sriram
|
Mitesh M. Khapra
|
Pratyush Kumar
Proceedings of the 28th International Conference on Computational Linguistics
Gesture typing is a method of typing words on a touch-based keyboard by creating a continuous trace passing through the relevant keys. This work is aimed at developing a keyboard that supports gesture typing in Indic languages. We begin by noting that when dealing with Indic languages, one needs to cater to two different sets of users: (i) users who prefer to type in the native Indic script (Devanagari, Bengali, etc.) and (ii) users who prefer to type in the English script but want the transliterated output in the native script. In both cases, we need a model that takes a trace as input and maps it to the intended word. To enable the development of these models, we create and release two datasets. First, we create a dataset containing keyboard traces for 193,658 words from 7 Indic languages. Second, we curate 104,412 English-Indic transliteration pairs from Wikidata across these languages. Using these datasets we build a model that performs path decoding, transliteration and transliteration correction. Unlike prior approaches, our proposed model does not make co-character independence assumptions during decoding. The overall accuracy of our model across the 7 languages varies from 70-95%.