Anisha Kabir
2022
Mitigating Covertly Unsafe Text within Natural Language Systems
Alex Mei
|
Anisha Kabir
|
Sharon Levy
|
Melanie Subbiah
|
Emily Allaway
|
John Judge
|
Desmond Patton
|
Bruce Bimber
|
Kathleen McKeown
|
William Yang Wang
Findings of the Association for Computational Linguistics: EMNLP 2022
An increasingly prevalent problem for intelligent technologies is text safety, as uncontrolled systems may generate recommendations to their users that lead to injury or life-threatening consequences. However, the degree of explicitness of a generated statement that can cause physical harm varies. In this paper, we distinguish types of text that can lead to physical harm and establish one particularly underexplored category: covertly unsafe text. Then, we further break down this category with respect to the system’s information and discuss solutions to mitigate the generation of text in each of these subcategories. Ultimately, our work defines the problem of covertly unsafe language that causes physical harm and argues that this subtle yet dangerous issue needs to be prioritized by stakeholders and regulators. We highlight mitigation strategies to inspire future researchers to tackle this challenging problem and help improve safety within smart systems.
Learning to Prioritize: Precision-Driven Sentence Filtering for Long Text Summarization
Alex Mei
|
Anisha Kabir
|
Rukmini Bapat
|
John Judge
|
Tony Sun
|
William Yang Wang
Proceedings of the Thirteenth Language Resources and Evaluation Conference
Neural text summarization has shown great potential in recent years. However, current state-of-the-art summarization models are limited by their maximum input length, posing a challenge to summarizing longer texts comprehensively. As part of a layered summarization architecture, we introduce PureText, a simple yet effective pre-processing layer that removes low- quality sentences in articles to improve existing summarization models. When evaluated on popular datasets like WikiHow and Reddit TIFU, we show up to 3.84 and 8.57 point ROUGE-1 absolute improvement on the full test set and the long article subset, respectively, for state-of-the-art summarization models such as BertSum and BART. Our approach provides downstream models with higher-quality sentences for summarization, improving overall model performance, especially on long text articles.
Search
Fix data
Co-authors
- John Judge 2
- Alex Mei 2
- William Yang Wang 2
- Emily Allaway 1
- Rukmini Bapat 1
- show all...