Anjishnu Kumar


2019

pdf bib
Large Scale Question Paraphrase Retrieval with Smoothed Deep Metric Learning
Daniele Bonadiman | Anjishnu Kumar | Arpit Mittal
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

The goal of a Question Paraphrase Retrieval (QPR) system is to retrieve equivalent questions that result in the same answer as the original question. Such a system can be used to understand and answer rare and noisy reformulations of common questions by mapping them to a set of canonical forms. This has large-scale applications for community Question Answering (cQA) and open-domain spoken language question answering systems. In this paper we describe a new QPR system implemented as a Neural Information Retrieval (NIR) system consisting of a neural network sentence encoder and an approximate k-Nearest Neighbour index for efficient vector retrieval. We also describe our mechanism to generate an annotated dataset for question paraphrase retrieval experiments automatically from question-answer logs via distant supervision. We show that the standard loss function in NIR, triplet loss, does not perform well with noisy labels. We propose smoothed deep metric loss (SDML) and with our experiments on two QPR datasets we show that it significantly outperforms triplet loss in the noisy label setting.

pdf bib
Learning When Not to Answer: a Ternary Reward Structure for Reinforcement Learning Based Question Answering
Fréderic Godin | Anjishnu Kumar | Arpit Mittal
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)

In this paper, we investigate the challenges of using reinforcement learning agents for question-answering over knowledge graphs for real-world applications. We examine the performance metrics used by state-of-the-art systems and determine that they are inadequate for such settings. More specifically, they do not evaluate the systems correctly for situations when there is no answer available and thus agents optimized for these metrics are poor at modeling confidence. We introduce a simple new performance metric for evaluating question-answering agents that is more representative of practical usage conditions, and optimize for this metric by extending the binary reward structure used in prior work to a ternary reward structure which also rewards an agent for not answering a question rather than giving an incorrect answer. We show that this can drastically improve the precision of answered questions while only not answering a limited number of previously correctly answered questions. Employing a supervised learning strategy using depth-first-search paths to bootstrap the reinforcement learning algorithm further improves performance.

2018

pdf bib
Efficient Large-Scale Neural Domain Classification with Personalized Attention
Young-Bum Kim | Dongchan Kim | Anjishnu Kumar | Ruhi Sarikaya
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we explore the task of mapping spoken language utterances to one of thousands of natural language understanding domains in intelligent personal digital assistants (IPDAs). This scenario is observed in mainstream IPDAs in industry that allow third parties to develop thousands of new domains to augment built-in first party domains to rapidly increase domain coverage and overall IPDA capabilities. We propose a scalable neural model architecture with a shared encoder, a novel attention mechanism that incorporates personalization information and domain-specific classifiers that solves the problem efficiently. Our architecture is designed to efficiently accommodate incremental domain additions achieving two orders of magnitude speed up compared to full model retraining. We consider the practical constraints of real-time production systems, and design to minimize memory footprint and runtime latency. We demonstrate that incorporating personalization significantly improves domain classification accuracy in a setting with thousands of overlapping domains.