Ankit Pal
2024
Gemini Goes to Med School: Exploring the Capabilities of Multimodal Large Language Models on Medical Challenge Problems & Hallucinations
Ankit Pal
|
Malaikannan Sankarasubbu
Proceedings of the 6th Clinical Natural Language Processing Workshop
Large language models have the potential to be valuable in the healthcare industry, but it’s crucial to verify their safety and effectiveness through rigorous evaluation. In our study, we evaluated LLMs, including Google’s Gemini, across various medical tasks. Despite Gemini’s capabilities, it underperformed compared to leading models like MedPaLM 2 and GPT-4, particularly in medical visual question answering (VQA), with a notable accuracy gap (Gemini at 61.45% vs. GPT-4V at 88%). Our analysis revealed that Gemini is highly susceptible to hallucinations, overconfidence, and knowledge gaps, which indicate risks if deployed uncritically. We also performed a detailed analysis by medical subject and test type, providing actionable feedback for developers and clinicians. To mitigate risks, we implemented effective prompting strategies, improving performance, and contributed to the field by releasing a Python module for medical LLM evaluation and establishing a leaderboard on Hugging Face for ongoing research and development. Python module can be found at https://github.com/promptslab/RosettaEval
2023
Med-HALT: Medical Domain Hallucination Test for Large Language Models
Ankit Pal
|
Logesh Kumar Umapathi
|
Malaikannan Sankarasubbu
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL)
This research paper focuses on the challenges posed by hallucinations in large language models (LLMs), particularly in the context of the medical domain. Hallucination, wherein these models generate plausible yet unverified or incorrect information, can have serious consequences in healthcare applications. We propose a new benchmark and dataset, Med-HALT (Medical Domain Hallucination Test), designed specifically to evaluate and reduce hallucinations. Med-HALT provides a diverse multinational dataset derived from medical examinations across various countries and includes multiple innovative testing modalities. Med-HALT includes two categories of tests reasoning and memory-based hallucination tests, designed to assess LLMs’ problem-solving and information retrieval abilities. Our study evaluated leading LLMs, including Text Davinci, GPT-3.5, LlaMa-2, MPT, and Falcon, revealing significant differences in their performance. The paper provides detailed insights into the dataset, promoting transparency and reproducibility. Through this work, we aim to contribute to the development of safer and more reliable language models in healthcare. Our benchmark can be found at medhalt.github.io
2022
DeepParliament: A Legal domain Benchmark & Dataset for Parliament Bills Prediction
Ankit Pal
Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)
This paper introduces DeepParliament, a legal domain Benchmark Dataset that gathers bill documents and metadata and performs various bill status classification tasks. The proposed dataset text covers a broad range of bills from 1986 to the present and contains richer information on parliament bill content. Data collection, detailed statistics and analyses are provided in the paper. Moreover, we experimented with different types of models ranging from RNN to pretrained and reported the results. We are proposing two new benchmarks: Binary and Multi-Class Bill Status classification. Models developed for bill documents and relevant supportive tasks may assist Members of Parliament (MPs), presidents, and other legal practitioners. It will help review or prioritise bills, thus speeding up the billing process, improving the quality of decisions and reducing the time consumption in both houses. Considering that the foundation of the country”s democracy is Parliament and state legislatures, we anticipate that our research will be an essential addition to the Legal NLP community. This work will be the first to present a Parliament bill prediction task. In order to improve the accessibility of legal AI resources and promote reproducibility, we have made our code and dataset publicly accessible at github.com/monk1337/DeepParliament.