Ann Lee


2022

pdf bib
Direct Speech-to-Speech Translation With Discrete Units
Ann Lee | Peng-Jen Chen | Changhan Wang | Jiatao Gu | Sravya Popuri | Xutai Ma | Adam Polyak | Yossi Adi | Qing He | Yun Tang | Juan Pino | Wei-Ning Hsu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation. We tackle the problem by first applying a self-supervised discrete speech encoder on the target speech and then training a sequence-to-sequence speech-to-unit translation (S2UT) model to predict the discrete representations of the target speech. When target text transcripts are available, we design a joint speech and text training framework that enables the model to generate dual modality output (speech and text) simultaneously in the same inference pass. Experiments on the Fisher Spanish-English dataset show that the proposed framework yields improvement of 6.7 BLEU compared with a baseline direct S2ST model that predicts spectrogram features. When trained without any text transcripts, our model performance is comparable to models that predict spectrograms and are trained with text supervision, showing the potential of our system for translation between unwritten languages.

pdf bib
Text-Free Prosody-Aware Generative Spoken Language Modeling
Eugene Kharitonov | Ann Lee | Adam Polyak | Yossi Adi | Jade Copet | Kushal Lakhotia | Tu Anh Nguyen | Morgane Riviere | Abdelrahman Mohamed | Emmanuel Dupoux | Wei-Ning Hsu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Speech pre-training has primarily demonstrated efficacy on classification tasks, while its capability of generating novel speech, similar to how GPT-2 can generate coherent paragraphs, has barely been explored. Generative Spoken Language Modeling (GSLM) (CITATION) is the only prior work addressing the generative aspect of speech pre-training, which builds a text-free language model using discovered units. Unfortunately, because the units used in GSLM discard most prosodic information, GSLM fails to leverage prosody for better comprehension and does not generate expressive speech. In this work, we present a prosody-aware generative spoken language model (pGSLM). It is composed of a multi-stream transformer language model (MS-TLM) of speech, represented as discovered unit and prosodic feature streams, and an adapted HiFi-GAN model converting MS-TLM outputs to waveforms. Experimental results show that the pGSLM can utilize prosody to improve both prosody and content modeling, and also generate natural, meaningful, and coherent speech given a spoken prompt. Audio samples can be found at https://speechbot.github.io/pgslm. Codes and models are available at https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/pgslm.

2021

pdf bib
fairseq Sˆ2: A Scalable and Integrable Speech Synthesis Toolkit
Changhan Wang | Wei-Ning Hsu | Yossi Adi | Adam Polyak | Ann Lee | Peng-Jen Chen | Jiatao Gu | Juan Pino
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

This paper presents fairseq Sˆ2, a fairseq extension for speech synthesis. We implement a number of autoregressive (AR) and non-AR text-to-speech models, and their multi-speaker variants. To enable training speech synthesis models with less curated data, a number of preprocessing tools are built and their importance is shown empirically. To facilitate faster iteration of development and analysis, a suite of automatic metrics is included. Apart from the features added specifically for this extension, fairseq Sˆ2 also benefits from the scalability offered by fairseq and can be easily integrated with other state-of-the-art systems provided in this framework. The code, documentation, and pre-trained models will be made available at https://github.com/pytorch/fairseq/tree/master/examples/speech_synthesis.

pdf bib
VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation
Changhan Wang | Morgane Riviere | Ann Lee | Anne Wu | Chaitanya Talnikar | Daniel Haziza | Mary Williamson | Juan Pino | Emmanuel Dupoux
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We introduce VoxPopuli, a large-scale multilingual corpus providing 400K hours of unlabeled speech data in 23 languages. It is the largest open data to date for unsupervised representation learning as well as semi-supervised learning. VoxPopuli also contains 1.8K hours of transcribed speeches in 15 languages and their aligned oral interpretations into 15 target languages totaling 17.3K hours. We provide speech recognition (ASR) baselines and validate the versatility of VoxPopuli unlabeled data in semi-supervised ASR and speech-to-text translation under challenging out-of-domain settings. The corpus is available at https://github.com/facebookresearch/voxpopuli.

pdf bib
Discriminative Reranking for Neural Machine Translation
Ann Lee | Michael Auli | Marc’Aurelio Ranzato
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Reranking models enable the integration of rich features to select a better output hypothesis within an n-best list or lattice. These models have a long history in NLP, and we revisit discriminative reranking for modern neural machine translation models by training a large transformer architecture. This takes as input both the source sentence as well as a list of hypotheses to output a ranked list. The reranker is trained to predict the observed distribution of a desired metric, e.g. BLEU, over the n-best list. Since such a discriminator contains hundreds of millions of parameters, we improve its generalization using pre-training and data augmentation techniques. Experiments on four WMT directions show that our discriminative reranking approach is effective and complementary to existing generative reranking approaches, yielding improvements of up to 4 BLEU over the beam search output.

2020

pdf bib
Facebook AI’s WMT20 News Translation Task Submission
Peng-Jen Chen | Ann Lee | Changhan Wang | Naman Goyal | Angela Fan | Mary Williamson | Jiatao Gu
Proceedings of the Fifth Conference on Machine Translation

This paper describes Facebook AI’s submission to WMT20 shared news translation task. We focus on the low resource setting and participate in two language pairs, Tamil <-> English and Inuktitut <-> English, where there are limited out-of-domain bitext and monolingual data. We approach the low resource problem using two main strategies, leveraging all available data and adapting the system to the target news domain. We explore techniques that leverage bitext and monolingual data from all languages, such as self-supervised model pretraining, multilingual models, data augmentation, and reranking. To better adapt the translation system to the test domain, we explore dataset tagging and fine-tuning on in-domain data. We observe that different techniques provide varied improvements based on the available data of the language pair. Based on the finding, we integrate these techniques into one training pipeline. For En->Ta, we explore an unconstrained setup with additional Tamil bitext and monolingual data and show that further improvement can be obtained. On the test set, our best submitted systems achieve 21.5 and 13.7 BLEU for Ta->En and En->Ta respectively, and 27.9 and 13.0 for Iu->En and En->Iu respectively.