Anna Aksenova


2023

pdf bib
Clinical Text Classification to SNOMED CT Codes Using Transformers Trained on Linked Open Medical Ontologies
Anton Hristov | Petar Ivanov | Anna Aksenova | Tsvetan Asamov | Pavlin Gyurov | Todor Primov | Svetla Boytcheva
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

We present an approach for medical text coding with SNOMED CT. Our approach uses publicly available linked open data from terminologies and ontologies as training data for the algorithms. We claim that even small training corpora made of short text snippets can be used to train models for the given task. We propose a method based on transformers enhanced with clustering and filtering of the candidates. Further, we adopt a classical machine learning approach - support vector classification (SVC) using transformer embeddings. The resulting approach proves to be more accurate than the predictions given by Large Language Models. We evaluate on a dataset generated from linked open data for SNOMED codes related to morphology and topography for four use cases. Our transformers-based approach achieves an F1-score of 0.82 for morphology and 0.99 for topography codes. Further, we validate the applicability of our approach in a clinical context using labelled real clinical data that are not used for model training.

2022

pdf bib
RuDSI: Graph-based Word Sense Induction Dataset for Russian
Anna Aksenova | Ekaterina Gavrishina | Elisei Rykov | Andrey Kutuzov
Proceedings of TextGraphs-16: Graph-based Methods for Natural Language Processing

We present RuDSI, a new benchmark for word sense induction (WSI) in Russian. The dataset was created using manual annotation and semi-automatic clustering of Word Usage Graphs (WUGs). RuDSI is completely data-driven (based on texts from Russian National Corpus), with no external word senses imposed on annotators. We present and analyze RuDSI, describe our annotation workflow, show how graph clustering parameters affect the dataset, report the performance that several baseline WSI methods obtain on RuDSI and discuss possibilities for improving these scores.