Anna Martin


2022

pdf bib
NLPSharedTasks: A Corpus of Shared Task Overview Papers in Natural Language Processing Domains
Anna Martin | Ted Pedersen | Jennifer D’Souza
Proceedings of the first Workshop on Information Extraction from Scientific Publications

As the rate of scientific output continues to grow, it is increasingly important to develop systems to improve interfaces between researchers and scholarly papers. Training models to extract scientific information from the full texts of scholarly documents is important for improving how we structure and access scientific information. However, there are few annotated corpora that provide full paper texts. This paper presents the NLPSharedTasks corpus, a new resource of 254 full text Shared Task Overview papers in NLP domains with annotated task descriptions. We calculated strict and relaxed inter-annotator agreement scores, achieving Cohen’s kappa coefficients of 0.44 and 0.95, respectively. Lastly, we performed a sentence classification task over the dataset, in order to generate a neural baseline for future research and to provide an example of how to preprocess unbalanced datasets of full scientific texts. We achieved an F1 score of 0.75 using SciBERT, fine-tuned and tested on a rebalanced version of the dataset.

2021

pdf bib
PAUSE: Positive and Annealed Unlabeled Sentence Embedding
Lele Cao | Emil Larsson | Vilhelm von Ehrenheim | Dhiana Deva Cavalcanti Rocha | Anna Martin | Sonja Horn
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Sentence embedding refers to a set of effective and versatile techniques for converting raw text into numerical vector representations that can be used in a wide range of natural language processing (NLP) applications. The majority of these techniques are either supervised or unsupervised. Compared to the unsupervised methods, the supervised ones make less assumptions about optimization objectives and usually achieve better results. However, the training requires a large amount of labeled sentence pairs, which is not available in many industrial scenarios. To that end, we propose a generic and end-to-end approach – PAUSE (Positive and Annealed Unlabeled Sentence Embedding), capable of learning high-quality sentence embeddings from a partially labeled dataset. We experimentally show that PAUSE achieves, and sometimes surpasses, state-of-the-art results using only a small fraction of labeled sentence pairs on various benchmark tasks. When applied to a real industrial use case where labeled samples are scarce, PAUSE encourages us to extend our dataset without the burden of extensive manual annotation work.

pdf bib
Duluth at SemEval-2021 Task 11: Applying DeBERTa to Contributing Sentence Selection and Dependency Parsing for Entity Extraction
Anna Martin | Ted Pedersen
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes the Duluth system that participated in SemEval-2021 Task 11, NLP Contribution Graph. It details the extraction of contribution sentences and scientific entities and their relations from scholarly articles in the domain of Natural Language Processing. Our solution uses deBERTa for multi-class sentence classification to extract the contributing sentences and their type, and dependency parsing to outline each sentence and extract subject-predicate-object triples. Our system ranked fifth of seven for Phase 1: end-to-end pipeline, sixth of eight for Phase 2 Part 1: phrases and triples, and fifth of eight for Phase 2 Part 2: triples extraction.