While the situation has improved for text-only models, it again seems to be the case currently that multimodal (text and image) models develop faster than ways to evaluate them. In this paper, we bring a recently developed evaluation paradigm from text models to multimodal models, namely evaluation through the goal-oriented game (self) play, complementing reference-based and preference-based evaluation. Specifically, we define games that challenge a model’s capability to represent a situation from visual information and align such representations through dialogue. We find that the largest closed models perform rather well on the games that we define, while even the best open-weight models struggle with them. On further analysis, we find that the exceptional deep captioning capabilities of the largest models drive some of the performance. There is still room to grow for both kinds of models, ensuring the continued relevance of the benchmark.
Recent research shows that pre-trained language models, built to generate text conditioned on some context, learn to encode syntactic knowledge to a certain degree. This has motivated researchers to move beyond the sentence-level and look into their ability to encode less studied discourse-level phenomena. In this paper, we add to the body of probing research by investigating discourse entity representations in large pre-trained language models in English. Motivated by early theories of discourse and key pieces of previous work, we focus on the information-status of entities as discourse-new or discourse-old. We present two probing models, one based on binary classification and another one on sequence labeling. The results of our experiments show that pre-trained language models do encode information on whether an entity has been introduced before or not in the discourse. However, this information alone is not sufficient to find the entities in a discourse, opening up interesting questions about the definition of entities for future work.
Coherent discourse is distinguished from a mere collection of utterances by the satisfaction of a diverse set of constraints, for example choice of expression, logical relation between denoted events, and implicit compatibility with world-knowledge. Do neural language models encode such constraints? We design an extendable set of test suites addressing different aspects of discourse and dialogue coherence. Unlike most previous coherence evaluation studies, we address specific linguistic devices beyond sentence order perturbations, which allow for a more fine-grained analysis of what constitutes coherence and what neural models trained on a language modelling objective are capable of encoding. Extending the targeted evaluation paradigm for neural language models (Marvin and Linzen, 2018) to phenomena beyond syntax, we show that this paradigm is equally suited to evaluate linguistic qualities that contribute to the notion of coherence.
Prior work has determined domain similarity using text-based features of a corpus. However, when using pre-trained word embeddings, the underlying text corpus might not be accessible anymore. Therefore, we propose the CCA measure, a new measure of domain similarity based directly on the dimension-wise correlations between corresponding embedding spaces. Our results suggest that an inherent notion of domain can be captured this way, as we are able to reproduce our findings for different domain comparisons for English, German, Spanish and Czech as well as in cross-lingual comparisons. We further find a threshold at which the CCA measure indicates that two corpora come from the same domain in a monolingual setting by applying permutation tests. By evaluating the usability of the CCA measure in a domain adaptation application, we also show that it can be used to determine which corpora are more similar to each other in a cross-domain sentiment detection task.