We present a multi-task learning approach to predicting semantic plausibility by leveraging 50+ adapters categorized into 17 tasks within an efficient training framework. Across four plausibility datasets in English of varying size and linguistic constructions, we compare how models provided with knowledge from a range of NLP tasks perform in contrast to models without external information. Our results show that plausibility prediction benefits from complementary knowledge (e.g., provided by syntactic tasks) are significant but non-substantial, while performance may be hurt when injecting knowledge from an unsuitable task. Similarly important, we find that knowledge transfer may be hindered by class imbalance, and demonstrate the positive yet minor effect of balancing training data, even at the expense of size.
We present a comprehensive computational study of the under-investigated phenomenon of personal name compounds (PNCs) in German such as Willkommens-Merkel (‘Welcome-Merkel’). Prevalent in news, social media, and political discourse, PNCs are hypothesized to exhibit an evaluative function that is reflected in a more positive or negative perception as compared to the respective personal full name (such as Angela Merkel). We model 321 PNCs and their corresponding full names at discourse level, and show that PNCs bear an evaluative nature that can be captured through a variety of computational methods. Specifically, we assess through valence information whether a PNC is more positively or negatively evaluative than the person’s name, by applying and comparing two approaches using (i) valence norms and (ii) pre-trained language models (PLMs). We further enrich our data with personal, domain-specific, and extra-linguistic information and perform a range of regression analyses revealing that factors including compound and modifier valence, domain, and political party membership influence how a PNC is evaluated.
We propose a novel approach to learn domain-specific plausible materials for components in the vehicle repair domain by probing Pretrained Language Models (PLMs) in a cloze task style setting to overcome the lack of annotated datasets. We devise a new method to aggregate salient predictions from a set of cloze query templates and show that domain-adaptation using either a small, high-quality or a customized Wikipedia corpus boosts performance. When exploring resource-lean alternatives, we find a distilled PLM clearly outperforming a classic pattern-based algorithm. Further, given that 98% of our domain-specific components are multiword expressions, we successfully exploit the compositionality assumption as a way to address data sparsity.
We present a novel dataset for physical and abstract plausibility of events in English. Based on naturally occurring sentences extracted from Wikipedia, we infiltrate degrees of abstractness, and automatically generate perturbed pseudo-implausible events. We annotate a filtered and balanced subset for plausibility using crowd-sourcing, and perform extensive cleansing to ensure annotation quality. In-depth quantitative analyses indicate that annotators favor plausibility over implausibility and disagree more on implausible events. Furthermore, our plausibility dataset is the first to capture abstractness in events to the same extent as concreteness, and we find that event abstractness has an impact on plausibility ratings: more concrete event participants trigger a perception of implausibility.
Persuasion techniques detection in news in a multi-lingual setup is non-trivial and comes with challenges, including little training data. Our system successfully leverages (back-)translation as data augmentation strategies with multi-lingual transformer models for the task of detecting persuasion techniques. The automatic and human evaluation of our augmented data allows us to explore whether (back-)translation aid or hinder performance. Our in-depth analyses indicate that both data augmentation strategies boost performance; however, balancing human-produced and machine-generated data seems to be crucial.
Agenda-setting is a widely explored phenomenon in political science: powerful stakeholders (governments or their financial supporters) have control over the media and set their agenda: political and economical powers determine which news should be salient. This is a clear case of targeted manipulation to divert the public attention from serious issues affecting internal politics (such as economic downturns and scandals) by flooding the media with potentially distracting information. We investigate agenda-setting in the Russian social media landscape, exploring the relation between economic indicators and mentions of foreign geopolitical entities, as well as of Russia itself. Our contributions are at three levels: at the level of the domain of the investigation, our study is the first to substructure the Russian media landscape in state-controlled vs. independent outlets in the context of strategic distraction from negative economic trends; at the level of the scope of the investigation, we involve a large set of geopolitical entities (while previous work has focused on the U.S.); at the qualitative level, our analysis of posts on Ukraine, whose relationship with Russia is of high geopolitical relevance, provides further insights into the contrast between state-controlled and independent outlets.