Annika Schreiner
2024
Characterizing Stereotypical Bias from Privacy-preserving Pre-Training
Stefan Arnold
|
Rene Gröbner
|
Annika Schreiner
Proceedings of the Fifth Workshop on Privacy in Natural Language Processing
Differential Privacy (DP) can be applied to raw text by exploiting the spatial arrangement of words in an embedding space. We investigate the implications of such text privatization on Language Models (LMs) and their tendency towards stereotypical associations. Since previous studies documented that linguistic proficiency correlates with stereotypical bias, one could assume that techniques for text privatization, which are known to degrade language modeling capabilities, would cancel out undesirable biases. By testing BERT models trained on texts containing biased statements primed with varying degrees of privacy, our study reveals that while stereotypical bias generally diminishes when privacy is tightened, text privatization does not uniformly equate to diminishing bias across all social domains. This highlights the need for careful diagnosis of bias in LMs that undergo text privatization.
2023
Disentangling the Linguistic Competence of Privacy-Preserving BERT
Stefan Arnold
|
Nils Kemmerzell
|
Annika Schreiner
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP
Differential Privacy (DP) has been tailored to address the unique challenges of text-to-text privatization. However, text-to-text privatization is known for degrading the performance of language models when trained on perturbed text. Employing a series of interpretation techniques on the internal representations extracted from BERT trained on perturbed pre-text, we intend to disentangle at the linguistic level the distortion induced by differential privacy. Experimental results from a representational similarity analysis indicate that the overall similarity of internal representations is substantially reduced. Using probing tasks to unpack this dissimilarity, we find evidence that text-to-text privatization affects the linguistic competence across several formalisms, encoding localized properties of words while falling short at encoding the contextual relationships between spans of words.
Search