While large language models have achieved remarkable performance on various code generation benchmarks, there have been growing concerns regarding potential contamination of these benchmarks as they may be leaked into pretraining and finetuning data. While recent work has investigated contamination in natural language generation and understanding tasks, there has been less extensive research into how data contamination impacts the evaluation of code generation, which is critical for understanding the robustness and reliability of LLMs in programming contexts. In this work, we perform a comprehensive study of data contamination of popular code generation benchmarks, and precisely quantify their overlap with pretraining corpus through both surface-level and semantic-level matching. In our experiments, we show that there are substantial overlap between popular code generation benchmarks and open training corpus, and models perform significantly better on the subset of the benchmarks where similar solutions are seen during training. We also conduct extensive analysis on the factors that affect model memorization and generalization, such as model size, problem difficulty, and question length. We release all resulting files from our matching pipeline for future research.
Large language models (LLMs) have achieved remarkable performance on a variety of natural language understanding tasks. However, existing benchmarks are inadequate in measuring the complex logical reasoning capabilities of a model. We present FOLIO, a human-annotated, logically complex and diverse dataset for reasoning in natural language (NL), equipped with first-order logic (FOL) annotations. FOLIO consists of 1,430 examples (unique conclusions), each paired with one of 487 sets of premises used to deductively reason for the validity of each conclusion. The logical correctness of the premises and conclusions is ensured by their FOL annotations, which are automatically verified by an FOL inference engine. In addition to the main NL reasoning task, NL-FOL pairs in FOLIO constitute a new NL-FOL translation dataset. Our experiments on FOLIO systematically evaluate the FOL reasoning ability of supervised fine-tuning on medium-sized language models. For both NL reasoning and NL-FOL translation, we benchmark multiple state-of-the-art language models. Our results show that a subset of FOLIO remains a challenge for one of the most capable Large Language Model (LLM) publicly available, GPT-4.
Recently, large language models (LLMs), especially those that are pretrained on code, have demonstrated strong capabilities in generating programs from natural language inputs. Despite promising results, there is a notable lack of a comprehensive evaluation of these models’ language-to-code generation capabilities. Existing studies often focus on specific tasks, model architectures, or learning paradigms, leading to a fragmented understanding of the overall landscape. In this work, we present L2CEval, a systematic evaluation of the language-to-code generation capabilities of LLMs on 7 tasks across the domain spectrum of semantic parsing, math reasoning, and Python programming, analyzing the factors that potentially affect their performance, such as model size, pretraining data, instruction tuning, and different prompting methods. In addition, we assess confidence calibration, and conduct human evaluations to identify typical failures across different tasks and models. L2CEval offers a comprehensive understanding of the capabilities and limitations of LLMs in language-to-code generation. We release the evaluation framework1 and all model outputs, hoping to lay the groundwork for further future research. All future evaluations (e.g., LLaMA-3, StarCoder2, etc) will be updated on the project website: https://l2c-eval.github.io/.
Text summarization helps readers capture salient information from documents, news, interviews, and meetings. However, most state-of-the-art pretrained language models (LM) are unable to efficiently process long text for many summarization tasks. In this paper, we propose SummN, a simple, flexible, and effective multi-stage framework for input texts that are longer than the maximum context length of typical pretrained LMs. SummN first splits the data samples and generates a coarse summary in multiple stages and then produces the final fine-grained summary based on it. Our framework can process input text of arbitrary length by adjusting the number of stages while keeping the LM input size fixed. Moreover, it can deal with both single-source documents and dialogues, and it can be used on top of different backbone abstractive summarization models. To the best of our knowledge, SummN is the first multi-stage split-then-summarize framework for long input summarization. Our experiments demonstrate that SummN outperforms previous state-of-the-art methods by improving ROUGE scores on three long meeting summarization datasets AMI, ICSI, and QMSum, two long TV series datasets from SummScreen, and a long document summarization dataset GovReport. Our data and code are available at https://github.com/psunlpgroup/Summ-N.
Transformer-based models have achieved state-of-the-art performance on short-input summarization. However, they still struggle with summarizing longer text. In this paper, we present DYLE, a novel dynamic latent extraction approach for abstractive long-input summarization. DYLE jointly trains an extractor and a generator and treats the extracted text snippets as the latent variable, allowing dynamic snippet-level attention weights during decoding. To provide adequate supervision, we propose simple yet effective heuristics for oracle extraction as well as a consistency loss term, which encourages the extractor to approximate the averaged dynamic weights predicted by the generator. We evaluate our method on different long-document and long-dialogue summarization tasks: GovReport, QMSum, and arXiv. Experiment results show that DYLE outperforms all existing methods on GovReport and QMSum, with gains up to 6.1 ROUGE, while yielding strong results on arXiv. Further analysis shows that the proposed dynamic weights provide interpretability of our generation process.
Structured knowledge grounding (SKG) leverages structured knowledge to complete user requests, such as semantic parsing over databases and question answering over knowledge bases. Since the inputs and outputs of SKG tasks are heterogeneous, they have been studied separately by different communities, which limits systematic and compatible research on SKG. In this paper, we overcome this limitation by proposing the UnifiedSKG framework, which unifies 21 SKG tasks into a text-to-text format, aiming to promote systematic SKG research, instead of being exclusive to a single task, domain, or dataset. We use UnifiedSKG to benchmark T5 with different sizes and show that T5, with simple modifications when necessary, achieves state-of-the-art performance on almost all of the 21 tasks. We further demonstrate that multi-task prefix-tuning improves the performance on most tasks, largely improving the overall performance. UnifiedSKG also facilitates the investigation of zero-shot and few-shot learning, and we show that T0, GPT-3, and Codex struggle in zero-shot and few-shot learning for SKG. We also use UnifiedSKG to conduct a series of controlled experiments on structured knowledge encoding variants across SKG tasks. UnifiedSKG is easily extensible to more tasks, and it is open-sourced at https://github.com/hkunlp/unifiedskg.
Neural attention models have achieved significant improvements on many natural language processing tasks. However, the quadratic memory complexity of the self-attention module with respect to the input length hinders their applications in long text summarization. Instead of designing more efficient attention modules, we approach this problem by investigating if models with a restricted context can have competitive performance compared with the memory-efficient attention models that maintain a global context by treating the input as a single sequence. Our model is applied to individual pages, which contain parts of inputs grouped by the principle of locality, during both the encoding and decoding stages. We empirically investigated three kinds of locality in text summarization at different levels of granularity, ranging from sentences to documents. Our experimental results show that our model has a better performance compared with strong baseline models with efficient attention modules, and our analysis provides further insights into our locality-aware modeling strategy.
Question Answering (QA) tasks requiring information from multiple documents often rely on a retrieval model to identify relevant information for reasoning. The retrieval model is typically trained to maximize the likelihood of the labeled supporting evidence. However, when retrieving from large text corpora such as Wikipedia, the correct answer can often be obtained from multiple evidence candidates. Moreover, not all such candidates are labeled as positive during annotation, rendering the training signal weak and noisy. This problem is exacerbated when the questions are unanswerable or when the answers are Boolean, since the model cannot rely on lexical overlap to make a connection between the answer and supporting evidence. We develop a new parameterization of set-valued retrieval that handles unanswerable queries, and we show that marginalizing over this set during training allows a model to mitigate false negatives in supporting evidence annotations. We test our method on two multi-document QA datasets, IIRC and HotpotQA. On IIRC, we show that joint modeling with marginalization improves model performance by 5.5 F1 points and achieves a new state-of-the-art performance of 50.5 F1. We also show that retrieval marginalization results in 4.1 QA F1 improvement over a non-marginalized baseline on HotpotQA in the fullwiki setting.
Recent advances in summarization provide models that can generate summaries of higher quality. Such models now exist for a number of summarization tasks, including query-based summarization, dialogue summarization, and multi-document summarization. While such models and tasks are rapidly growing in the research field, it has also become challenging for non-experts to keep track of them. To make summarization methods more accessible to a wider audience, we develop SummerTime by rethinking the summarization task from the perspective of an NLP non-expert. SummerTime is a complete toolkit for text summarization, including various models, datasets, and evaluation metrics, for a full spectrum of summarization-related tasks. SummerTime integrates with libraries designed for NLP researchers, and enables users with easy-to-use APIs. With SummerTime, users can locate pipeline solutions and search for the best model with their own data, and visualize the differences, all with a few lines of code. We also provide explanations for models and evaluation metrics to help users understand the model behaviors and select models that best suit their needs. Our library, along with a notebook demo, is available at https://github.com/Yale-LILY/SummerTime.
Dialogue summarization helps readers capture salient information from long conversations in meetings, interviews, and TV series. However, real-world dialogues pose a great challenge to current summarization models, as the dialogue length typically exceeds the input limits imposed by recent transformer-based pre-trained models, and the interactive nature of dialogues makes relevant information more context-dependent and sparsely distributed than news articles. In this work, we perform a comprehensive study on long dialogue summarization by investigating three strategies to deal with the lengthy input problem and locate relevant information: (1) extended transformer models such as Longformer, (2) retrieve-then-summarize pipeline models with several dialogue utterance retrieval methods, and (3) hierarchical dialogue encoding models such as HMNet. Our experimental results on three long dialogue datasets (QMSum, MediaSum, SummScreen) show that the retrieve-then-summarize pipeline models yield the best performance. We also demonstrate that the summary quality can be further improved with a stronger retrieval model and pretraining on proper external summarization datasets.