Anthony Larcher


2024

pdf bib
Vérification automatique de la voix de locuteurs après resynthèse à l’aide de PPG
Thibault Gaudier | Marie Tahon | Anthony Larcher | Yannick Estève
Actes des 35èmes Journées d'Études sur la Parole

La création de contenu journalistique peut être assistée par des outils technologiques comme la synthèse de parole. Cependant l’éditeur doit avoir la possibilité de contrôler la génération du contenu audio comme la prosodie, la prononciation ou le contenu linguistique. Dans ces travaux, un système de conversion de voix génère un signal de locuteur cible à partir d’une représentation temporelle de type Phonetic PosteriorGrams (PPGs) extraite d’un audio source. Les PPGs démêlent le contenu phonétique du contenu rythmique, et sont généralement considérés indépendants du locuteur. Cet article présente un système de conversion utilisant les PPGs, et son évaluation en qualité audio avec un test perceptif. Nous montrons également qu’un système de vérification du locuteur ne parvient pas à identifier le locuteur source après la conversion, même si le modèle a été entraîné sur des données synthétiques.

pdf bib
ALLIES: A Speech Corpus for Segmentation, Speaker Diarization, Speech Recognition and Speaker Change Detection
Marie Tahon | Anthony Larcher | Martin Lebourdais | Fethi Bougares | Anna Silnova | Pablo Gimeno
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This paper presents ALLIES, a meta corpus which gathers and extends existing French corpora collected from radio and TV shows. The corpus contains 1048 audio files for about 500 hours of speech. Agglomeration of data is always a difficult issue, as the guidelines used to collect, annotate and transcribe speech are generally different from one corpus to another. ALLIES intends to homogenize and correct speaker labels among the different files by integrated human feedback within a speaker verification system. The main contribution of this article is the design of a protocol in order to evaluate properly speech segmentation (including music and overlap detection), speaker diarization, speech transcription and speaker change detection. As part of it, a test partition has been carefully manually 1) segmented and annotated according to speech, music, noise, speaker labels with specific guidelines for overlap speech, 2) orthographically transcribed. This article also provides as a second contribution baseline results for several speech processing tasks.

2022

pdf bib
Overlaps and Gender Analysis in the Context of Broadcast Media
Martin Lebourdais | Marie Tahon | Antoine Laurent | Sylvain Meignier | Anthony Larcher
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Our main goal is to study the interactions between speakers according to their gender and role in broadcast media. In this paper, we propose an extensive study of gender and overlap annotations in various speech corpora mainly dedicated to diarisation or transcription tasks. We point out the issue of the heterogeneity of the annotation guidelines for both overlapping speech and gender categories. On top of that, we analyse how the speech content (casual speech, meetings, debate, interviews, etc.) impacts the distribution of overlapping speech segments. On a small dataset of 93 recordings from LCP French channel, we intend to characterise the interactions between speakers according to their gender. Finally, we propose a method which aims to highlight active speech areas in terms of interactions between speakers. Such a visualisation tool could improve the efficiency of qualitative studies conducted by researchers in human sciences.

2020

pdf bib
Evaluation of Lifelong Learning Systems
Yevhenii Prokopalo | Sylvain Meignier | Olivier Galibert | Loic Barrault | Anthony Larcher
Proceedings of the Twelfth Language Resources and Evaluation Conference

Current intelligent systems need the expensive support of machine learning experts to sustain their performance level when used on a daily basis. To reduce this cost, i.e. remaining free from any machine learning expert, it is reasonable to implement lifelong (or continuous) learning intelligent systems that will continuously adapt their model when facing changing execution conditions. In this work, the systems are allowed to refer to human domain experts who can provide the system with relevant knowledge about the task. Nowadays, the fast growth of lifelong learning systems development rises the question of their evaluation. In this article we propose a generic evaluation methodology for the specific case of lifelong learning systems. Two steps will be considered. First, the evaluation of human-assisted learning (including active and/or interactive learning) outside the context of lifelong learning. Second, the system evaluation across time, with propositions of how a lifelong learning intelligent system should be evaluated when including human assisted learning or not.

pdf bib
Évaluation de systèmes apprenant tout au long de la vie (Evaluation of lifelong learning systems )
Yevhenii Prokopalo | Sylvain Meignier | Olivier Galibert | Loïc Barrault | Anthony Larcher
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 1 : Journées d'Études sur la Parole

Aujourd’hui les systèmes intelligents obtiennent d’excellentes performances dans de nombreux domaines lorsqu’ils sont entraînés par des experts en apprentissage automatique. Lorsque ces systèmes sont mis en production, leurs performances se dégradent au cours du temps du fait de l’évolution de leur environnement réel. Une adaptation de leur modèle par des experts en apprentissage automatique est possible mais très coûteuse alors que les sociétés utilisant ces systèmes disposent d’experts du domaine qui pourraient accompagner ces systèmes dans un apprentissage tout au long de la vie. Dans cet article nous proposons un cadre d’évaluation générique pour des systèmes apprenant tout au long de la vie (SATLV). Nous proposons d’évaluer l’apprentissage assisté par l’humain (actif ou interactif) et l’apprentissage au cours du temps.

2016

pdf bib
Autoapprentissage pour le regroupement en locuteurs : premières investigations (First investigations on self trained speaker diarization )
Gaël Le Lan | Sylvain Meignier | Delphine Charlet | Anthony Larcher
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 1 : JEP

This paper investigates self trained cross-show speaker diarization applied to collections of French TV archives, based on an i-vector/PLDA framework. The parameters used for i-vectors extraction and PLDA scoring are trained in a unsupervised way, using the data of the collection itself. Performances are compared, using combinations of target data and external data for training. The experimental results on two distinct target corpora show that using data from the corpora themselves to perform unsupervised iterative training and domain adaptation of PLDA parameters can improve an existing system, trained on external annotated data. Such results indicate that performing speaker indexation on small collections of unlabeled audio archives should only rely on the availability of a sufficient external corpus, which can be specifically adapted to every target collection. We show that a minimum collection size is required to exclude the use of such an external bootstrap.

pdf bib
Exploration de paramètres acoustiques dérivés de GMM pour l’adaptation non supervisée de modèles acoustiques à base de réseaux de neurones profonds (Exploring GMM-derived features for unsupervised adaptation of deep neural network acoustic models)
Natalia Tomashenko | Yuri Khokhlov | Anthony Larcher | Yannick Estève
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 1 : JEP

L’étude présentée dans cet article améliore une méthode récemment proposée pour l’adaptation de modèles acoustiques markoviens couplés à un réseau de neurones profond (DNN-HMM). Cette méthode d’adaptation utilise des paramètres acoustiques dérivés de mixtures de modèles Gaussiens (GMM-derived features, GMMD ). L’amélioration provient de l’emploi de scores et de mesures de confiance calculés à partir de graphes construits dans le cadre d’un algorithme d’adaptation conventionnel dit de maximum a posteriori (MAP). Une version modifiée de l’adaptation MAP est appliquée sur le modèle GMM auxiliaire utilisé dans une procédure d’apprentissage adaptatif au locuteur (speaker adaptative training, SAT) lors de l’apprentissage du DNN. Des expériences menées sur le corpus Wall Street Journal (WSJ0) montrent que la technique d’adaptation non supervisée proposée dans cet article permet une réduction relative de 8, 4% du taux d’erreurs sur les mots (WER), par rapport aux résultats obtenus avec des modèles DNN-HMM indépendants du locuteur utilisant des paramètres acoustiques plus conventionnels.

2012

pdf bib
Analyse en Composante Principale pour l’extraction des i-vecteurs en vérification du locuteur (Principal Component Analysis for i-vector extraction in speaker verification.) [in French]
Anthony Larcher | Pierre-Michel Bousquet | Driss Matrouf | Jean-Francois Bonastre
Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 1: JEP