Antoine Bosselut


2021

pdf bib
Conversational Multi-Hop Reasoning with Neural Commonsense Knowledge and Symbolic Logic Rules
Forough Arabshahi | Jennifer Lee | Antoine Bosselut | Yejin Choi | Tom Mitchell
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

One of the challenges faced by conversational agents is their inability to identify unstated presumptions of their users’ commands, a task trivial for humans due to their common sense. In this paper, we propose a zero-shot commonsense reasoning system for conversational agents in an attempt to achieve this. Our reasoner uncovers unstated presumptions from user commands satisfying a general template of if-(state), then-(action), because-(goal). Our reasoner uses a state-of-the-art transformer-based generative commonsense knowledge base (KB) as its source of background knowledge for reasoning. We propose a novel and iterative knowledge query mechanism to extract multi-hop reasoning chains from the neural KB which uses symbolic logic rules to significantly reduce the search space. Similar to any KBs gathered to date, our commonsense KB is prone to missing knowledge. Therefore, we propose to conversationally elicit the missing knowledge from human users with our novel dynamic question generation strategy, which generates and presents contextualized queries to human users. We evaluate the model with a user study with human users that achieves a 35% higher success rate compared to SOTA.

pdf bib
On-the-Fly Attention Modulation for Neural Generation
Yue Dong | Chandra Bhagavatula | Ximing Lu | Jena D. Hwang | Antoine Bosselut | Jackie Chi Kit Cheung | Yejin Choi
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering
Michihiro Yasunaga | Hongyu Ren | Antoine Bosselut | Percy Liang | Jure Leskovec
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. Here we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph-based message passing. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

pdf bib
I’m Not Mad”: Commonsense Implications of Negation and Contradiction
Liwei Jiang | Antoine Bosselut | Chandra Bhagavatula | Yejin Choi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Natural language inference requires reasoning about contradictions, negations, and their commonsense implications. Given a simple premise (e.g., “I’m mad at you”), humans can reason about the varying shades of contradictory statements ranging from straightforward negations (“I’m not mad at you”) to commonsense contradictions (“I’m happy”). Moreover, these negated or contradictory statements shift the commonsense implications of the original premise in interesting and nontrivial ways. For example, while “I’m mad” implies “I’m unhappy about something,” negating the premise does not necessarily negate the corresponding commonsense implications. In this paper, we present the first comprehensive study focusing on commonsense implications of negated statements and contradictions. We introduce ANION, a new commonsense knowledge graph with 624K if-then rules focusing on negated and contradictory events. We then present joint generative and discriminative inference models for this new resource, providing novel empirical insights on how logical negations and commonsense contradictions reshape the commonsense implications of their original premises.

pdf bib
Discourse Understanding and Factual Consistency in Abstractive Summarization
Saadia Gabriel | Antoine Bosselut | Jeff Da | Ari Holtzman | Jan Buys | Kyle Lo | Asli Celikyilmaz | Yejin Choi
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We introduce a general framework for abstractive summarization with factual consistency and distinct modeling of the narrative flow in an output summary. Our work addresses current limitations of models for abstractive summarization that often hallucinate information or generate summaries with coherence issues. To generate abstractive summaries with factual consistency and narrative flow, we propose Cooperative Generator-Discriminator Networks (Co-opNet), a novel transformer-based framework where the generator works with a discriminator architecture to compose coherent long-form summaries. We explore four different discriminator objectives which each capture a different aspect of coherence, including whether salient spans of generated abstracts are hallucinated or appear in the input context, and the likelihood of sentence adjacency in generated abstracts. We measure the ability of Co-opNet to learn these objectives with arXiv scientific papers, using the abstracts as a proxy for gold long-form scientific article summaries. Empirical results from automatic and human evaluations demonstrate that Co-opNet learns to summarize with considerably improved global coherence compared to competitive baselines.

pdf bib
Edited Media Understanding Frames: Reasoning About the Intent and Implications of Visual Misinformation
Jeff Da | Maxwell Forbes | Rowan Zellers | Anthony Zheng | Jena D. Hwang | Antoine Bosselut | Yejin Choi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Understanding manipulated media, from automatically generated ‘deepfakes’ to manually edited ones, raises novel research challenges. Because the vast majority of edited or manipulated images are benign, such as photoshopped images for visual enhancements, the key challenge is to understand the complex layers of underlying intents of media edits and their implications with respect to disinformation. In this paper, we study Edited Media Frames, a new formalism to understand visual media manipulation as structured annotations with respect to the intents, emotional reactions, attacks on individuals, and the overall implications of disinformation. We introduce a dataset for our task, EMU, with 56k question-answer pairs written in rich natural language. We evaluate a wide variety of vision-and-language models for our task, and introduce a new model PELICAN, which builds upon recent progress in pretrained multimodal representations. Our model obtains promising results on our dataset, with humans rating its answers as accurate 48.2% of the time. At the same time, there is still much work to be done – and we provide analysis that highlights areas for further progress.

pdf bib
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)
Antoine Bosselut | Esin Durmus | Varun Prashant Gangal | Sebastian Gehrmann | Yacine Jernite | Laura Perez-Beltrachini | Samira Shaikh | Wei Xu
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

pdf bib
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Sebastian Gehrmann | Tosin Adewumi | Karmanya Aggarwal | Pawan Sasanka Ammanamanchi | Anuoluwapo Aremu | Antoine Bosselut | Khyathi Raghavi Chandu | Miruna-Adriana Clinciu | Dipanjan Das | Kaustubh Dhole | Wanyu Du | Esin Durmus | Ondřej Dušek | Chris Chinenye Emezue | Varun Gangal | Cristina Garbacea | Tatsunori Hashimoto | Yufang Hou | Yacine Jernite | Harsh Jhamtani | Yangfeng Ji | Shailza Jolly | Mihir Kale | Dhruv Kumar | Faisal Ladhak | Aman Madaan | Mounica Maddela | Khyati Mahajan | Saad Mahamood | Bodhisattwa Prasad Majumder | Pedro Henrique Martins | Angelina McMillan-Major | Simon Mille | Emiel van Miltenburg | Moin Nadeem | Shashi Narayan | Vitaly Nikolaev | Andre Niyongabo Rubungo | Salomey Osei | Ankur Parikh | Laura Perez-Beltrachini | Niranjan Ramesh Rao | Vikas Raunak | Juan Diego Rodriguez | Sashank Santhanam | João Sedoc | Thibault Sellam | Samira Shaikh | Anastasia Shimorina | Marco Antonio Sobrevilla Cabezudo | Hendrik Strobelt | Nishant Subramani | Wei Xu | Diyi Yang | Akhila Yerukola | Jiawei Zhou
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for the 2021 shared task at the associated GEM Workshop.

2020

pdf bib
Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense Reasoning
Lianhui Qin | Vered Shwartz | Peter West | Chandra Bhagavatula | Jena D. Hwang | Ronan Le Bras | Antoine Bosselut | Yejin Choi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Abductive and counterfactual reasoning, core abilities of everyday human cognition, require reasoning about what might have happened at time t, while conditioning on multiple contexts from the relative past and future. However, simultaneous incorporation of past and future contexts using generative language models (LMs) can be challenging, as they are trained either to condition only on the past context or to perform narrowly scoped text-infilling. In this paper, we propose DeLorean, a new unsupervised decoding algorithm that can flexibly incorporate both the past and future contexts using only off-the-shelf, left-to-right language models and no supervision. The key intuition of our algorithm is incorporating the future through back-propagation, during which, we only update the internal representation of the output while fixing the model parameters. By alternating between forward and backward propagation, DeLorean can decode the output representation that reflects both the left and right contexts. We demonstrate that our approach is general and applicable to two nonmonotonic reasoning tasks: abductive text generation and counterfactual story revision, where DeLorean outperforms a range of unsupervised and some supervised methods, based on automatic and human evaluation.

pdf bib
The Amazing World of Neural Language Generation
Yangfeng Ji | Antoine Bosselut | Thomas Wolf | Asli Celikyilmaz
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

Neural Language Generation (NLG) – using neural network models to generate coherent text – is among the most promising methods for automated text creation. Recent years have seen a paradigm shift in neural text generation, caused by the advances in deep contextual language modeling (e.g., LSTMs, GPT, GPT2) and transfer learning (e.g., ELMo, BERT). While these tools have dramatically improved the state of NLG, particularly for low resources tasks, state-of-the-art NLG models still face many challenges: a lack of diversity in generated text, commonsense violations in depicted situations, difficulties in making use of factual information, and difficulties in designing reliable evaluation metrics. In this tutorial, we will present an overview of the current state-of-the-art in neural network architectures, and how they shaped recent research directions in text generation. We will discuss how and why these models succeed/fail at generating coherent text, and provide insights on several applications.

pdf bib
Commonsense Reasoning for Natural Language Processing
Maarten Sap | Vered Shwartz | Antoine Bosselut | Yejin Choi | Dan Roth
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

Commonsense knowledge, such as knowing that “bumping into people annoys them” or “rain makes the road slippery”, helps humans navigate everyday situations seamlessly. Yet, endowing machines with such human-like commonsense reasoning capabilities has remained an elusive goal of artificial intelligence research for decades. In recent years, commonsense knowledge and reasoning have received renewed attention from the natural language processing (NLP) community, yielding exploratory studies in automated commonsense understanding. We organize this tutorial to provide researchers with the critical foundations and recent advances in commonsense representation and reasoning, in the hopes of casting a brighter light on this promising area of future research. In our tutorial, we will (1) outline the various types of commonsense (e.g., physical, social), and (2) discuss techniques to gather and represent commonsense knowledge, while highlighting the challenges specific to this type of knowledge (e.g., reporting bias). We will then (3) discuss the types of commonsense knowledge captured by modern NLP systems (e.g., large pretrained language models), and (4) present ways to measure systems’ commonsense reasoning abilities. We will finish with (5) a discussion of various ways in which commonsense reasoning can be used to improve performance on NLP tasks, exemplified by an (6) interactive session on integrating commonsense into a downstream task.

2019

pdf bib
COMET: Commonsense Transformers for Automatic Knowledge Graph Construction
Antoine Bosselut | Hannah Rashkin | Maarten Sap | Chaitanya Malaviya | Asli Celikyilmaz | Yejin Choi
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge with canonical templates, commonsense KBs only store loosely structured open-text descriptions of knowledge. We posit that an important step toward automatic commonsense completion is the development of generative models of commonsense knowledge, and propose COMmonsEnse Transformers (COMET) that learn to generate rich and diverse commonsense descriptions in natural language. Despite the challenges of commonsense modeling, our investigation reveals promising results when implicit knowledge from deep pre-trained language models is transferred to generate explicit knowledge in commonsense knowledge graphs. Empirical results demonstrate that COMET is able to generate novel knowledge that humans rate as high quality, with up to 77.5% (ATOMIC) and 91.7% (ConceptNet) precision at top 1, which approaches human performance for these resources. Our findings suggest that using generative commonsense models for automatic commonsense KB completion could soon be a plausible alternative to extractive methods.

pdf bib
Everything Happens for a Reason: Discovering the Purpose of Actions in Procedural Text
Bhavana Dalvi | Niket Tandon | Antoine Bosselut | Wen-tau Yih | Peter Clark
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Our goal is to better comprehend procedural text, e.g., a paragraph about photosynthesis, by not only predicting what happens, but *why* some actions need to happen before others. Our approach builds on a prior process comprehension framework for predicting actions’ effects, to also identify subsequent steps that those effects enable. We present our new model (XPAD) that biases effect predictions towards those that (1) explain more of the actions in the paragraph and (2) are more plausible with respect to background knowledge. We also extend an existing benchmark dataset for procedural text comprehension, ProPara, by adding the new task of explaining actions by predicting their dependencies. We find that XPAD significantly outperforms prior systems on this task, while maintaining the performance on the original task in ProPara. The dataset is available at http://data.allenai.org/propara

pdf bib
Counterfactual Story Reasoning and Generation
Lianhui Qin | Antoine Bosselut | Ari Holtzman | Chandra Bhagavatula | Elizabeth Clark | Yejin Choi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Counterfactual reasoning requires predicting how alternative events, contrary to what actually happened, might have resulted in different outcomes. Despite being considered a necessary component of AI-complete systems, few resources have been developed for evaluating counterfactual reasoning in narratives. In this paper, we propose Counterfactual Story Rewriting: given an original story and an intervening counterfactual event, the task is to minimally revise the story to make it compatible with the given counterfactual event. Solving this task will require deep understanding of causal narrative chains and counterfactual invariance, and integration of such story reasoning capabilities into conditional language generation models. We present TIMETRAVEL, a new dataset of 29,849 counterfactual rewritings, each with the original story, a counterfactual event, and human-generated revision of the original story compatible with the counterfactual event. Additionally, we include 81,407 counterfactual “branches” without a rewritten storyline to support future work on semi- or un-supervised approaches to counterfactual story rewriting. Finally, we evaluate the counterfactual rewriting capacities of several competitive baselines based on pretrained language models, and assess whether common overlap and model-based automatic metrics for text generation correlate well with human scores for counterfactual rewriting.

pdf bib
WIQA: A dataset for “What if...” reasoning over procedural text
Niket Tandon | Bhavana Dalvi | Keisuke Sakaguchi | Peter Clark | Antoine Bosselut
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We introduce WIQA, the first large-scale dataset of “What if...” questions over procedural text. WIQA contains a collection of paragraphs, each annotated with multiple influence graphs describing how one change affects another, and a large (40k) collection of “What if...?” multiple-choice questions derived from these. For example, given a paragraph about beach erosion, would stormy weather hasten or decelerate erosion? WIQA contains three kinds of questions: perturbations to steps mentioned in the paragraph; external (out-of-paragraph) perturbations requiring commonsense knowledge; and irrelevant (no effect) perturbations. We find that state-of-the-art models achieve 73.8% accuracy, well below the human performance of 96.3%. We analyze the challenges, in particular tracking chains of influences, and present the dataset as an open challenge to the community.

pdf bib
Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation
Antoine Bosselut | Asli Celikyilmaz | Marjan Ghazvininejad | Srinivasan Iyer | Urvashi Khandelwal | Hannah Rashkin | Thomas Wolf
Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation

pdf bib
Be Consistent! Improving Procedural Text Comprehension using Label Consistency
Xinya Du | Bhavana Dalvi | Niket Tandon | Antoine Bosselut | Wen-tau Yih | Peter Clark | Claire Cardie
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Our goal is procedural text comprehension, namely tracking how the properties of entities (e.g., their location) change with time given a procedural text (e.g., a paragraph about photosynthesis, a recipe). This task is challenging as the world is changing throughout the text, and despite recent advances, current systems still struggle with this task. Our approach is to leverage the fact that, for many procedural texts, multiple independent descriptions are readily available, and that predictions from them should be consistent (label consistency). We present a new learning framework that leverages label consistency during training, allowing consistency bias to be built into the model. Evaluation on a standard benchmark dataset for procedural text, ProPara (Dalvi et al., 2018), shows that our approach significantly improves prediction performance (F1) over prior state-of-the-art systems.

2018

pdf bib
Discourse-Aware Neural Rewards for Coherent Text Generation
Antoine Bosselut | Asli Celikyilmaz | Xiaodong He | Jianfeng Gao | Po-Sen Huang | Yejin Choi
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

In this paper, we investigate the use of discourse-aware rewards with reinforcement learning to guide a model to generate long, coherent text. In particular, we propose to learn neural rewards to model cross-sentence ordering as a means to approximate desired discourse structure. Empirical results demonstrate that a generator trained with the learned reward produces more coherent and less repetitive text than models trained with cross-entropy or with reinforcement learning with commonly used scores as rewards.

pdf bib
Deep Communicating Agents for Abstractive Summarization
Asli Celikyilmaz | Antoine Bosselut | Xiaodong He | Yejin Choi
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We present deep communicating agents in an encoder-decoder architecture to address the challenges of representing a long document for abstractive summarization. With deep communicating agents, the task of encoding a long text is divided across multiple collaborating agents, each in charge of a subsection of the input text. These encoders are connected to a single decoder, trained end-to-end using reinforcement learning to generate a focused and coherent summary. Empirical results demonstrate that multiple communicating encoders lead to a higher quality summary compared to several strong baselines, including those based on a single encoder or multiple non-communicating encoders.

pdf bib
Learning to Write with Cooperative Discriminators
Ari Holtzman | Jan Buys | Maxwell Forbes | Antoine Bosselut | David Golub | Yejin Choi
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite their local fluency, long-form text generated from RNNs is often generic, repetitive, and even self-contradictory. We propose a unified learning framework that collectively addresses all the above issues by composing a committee of discriminators that can guide a base RNN generator towards more globally coherent generations. More concretely, discriminators each specialize in a different principle of communication, such as Grice’s maxims, and are collectively combined with the base RNN generator through a composite decoding objective. Human evaluation demonstrates that text generated by our model is preferred over that of baselines by a large margin, significantly enhancing the overall coherence, style, and information of the generations.

pdf bib
Modeling Naive Psychology of Characters in Simple Commonsense Stories
Hannah Rashkin | Antoine Bosselut | Maarten Sap | Kevin Knight | Yejin Choi
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Understanding a narrative requires reading between the lines and reasoning about the unspoken but obvious implications about events and people’s mental states — a capability that is trivial for humans but remarkably hard for machines. To facilitate research addressing this challenge, we introduce a new annotation framework to explain naive psychology of story characters as fully-specified chains of mental states with respect to motivations and emotional reactions. Our work presents a new large-scale dataset with rich low-level annotations and establishes baseline performance on several new tasks, suggesting avenues for future research.

pdf bib
Reasoning about Actions and State Changes by Injecting Commonsense Knowledge
Niket Tandon | Bhavana Dalvi | Joel Grus | Wen-tau Yih | Antoine Bosselut | Peter Clark
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Comprehending procedural text, e.g., a paragraph describing photosynthesis, requires modeling actions and the state changes they produce, so that questions about entities at different timepoints can be answered. Although several recent systems have shown impressive progress in this task, their predictions can be globally inconsistent or highly improbable. In this paper, we show how the predicted effects of actions in the context of a paragraph can be improved in two ways: (1) by incorporating global, commonsense constraints (e.g., a non-existent entity cannot be destroyed), and (2) by biasing reading with preferences from large-scale corpora (e.g., trees rarely move). Unlike earlier methods, we treat the problem as a neural structured prediction task, allowing hard and soft constraints to steer the model away from unlikely predictions. We show that the new model significantly outperforms earlier systems on a benchmark dataset for procedural text comprehension (+8% relative gain), and that it also avoids some of the nonsensical predictions that earlier systems make.

2016

pdf bib
Learning Prototypical Event Structure from Photo Albums
Antoine Bosselut | Jianfu Chen | David Warren | Hannaneh Hajishirzi | Yejin Choi
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Search
Co-authors
Venues