António Câmara


pdf bib
Mapping the Multilingual Margins: Intersectional Biases of Sentiment Analysis Systems in English, Spanish, and Arabic
António Câmara | Nina Taneja | Tamjeed Azad | Emily Allaway | Richard Zemel
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion

As natural language processing systems become more widespread, it is necessary to address fairness issues in their implementation and deployment to ensure that their negative impacts on society are understood and minimized. However, there is limited work that studies fairness using a multilingual and intersectional framework or on downstream tasks. In this paper, we introduce four multilingual Equity Evaluation Corpora, supplementary test sets designed to measure social biases, and a novel statistical framework for studying unisectional and intersectional social biases in natural language processing. We use these tools to measure gender, racial, ethnic, and intersectional social biases across five models trained on emotion regression tasks in English, Spanish, and Arabic. We find that many systems demonstrate statistically significant unisectional and intersectional social biases. We make our code and datasets available for download.


pdf bib
Detecting Polarized Topics Using Partisanship-aware Contextualized Topic Embeddings
Zihao He | Negar Mokhberian | António Câmara | Andres Abeliuk | Kristina Lerman
Findings of the Association for Computational Linguistics: EMNLP 2021

Growing polarization of the news media has been blamed for fanning disagreement, controversy and even violence. Early identification of polarized topics is thus an urgent matter that can help mitigate conflict. However, accurate measurement of topic-wise polarization is still an open research challenge. To address this gap, we propose Partisanship-aware Contextualized Topic Embeddings (PaCTE), a method to automatically detect polarized topics from partisan news sources. Specifically, utilizing a language model that has been finetuned on recognizing partisanship of the news articles, we represent the ideology of a news corpus on a topic by corpus-contextualized topic embedding and measure the polarization using cosine distance. We apply our method to a dataset of news articles about the COVID-19 pandemic. Extensive experiments on different news sources and topics demonstrate the efficacy of our method to capture topical polarization, as indicated by its effectiveness of retrieving the most polarized topics.