Antonio Torralba
2024
MMToM-QA: Multimodal Theory of Mind Question Answering
Chuanyang Jin
|
Yutong Wu
|
Jing Cao
|
Jiannan Xiang
|
Yen-Ling Kuo
|
Zhiting Hu
|
Tomer Ullman
|
Antonio Torralba
|
Joshua Tenenbaum
|
Tianmin Shu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Theory of Mind (ToM), the ability to understand people’s mental states, is an essential ingredient for developing machines with human-level social intelligence. Recent machine learning models, particularly large language models, seem to show some aspects of ToM understanding. However, existing ToM benchmarks use unimodal datasets – either video or text. Human ToM, on the other hand, is more than video or text understanding. People can flexibly reason about another person’s mind based on conceptual representations (e.g., goals, beliefs, plans) extracted from any available data. To address this, we introduce a multimodal Theory of Mind question answering (MMToM-QA) benchmark. MMToM-QA comprehensively evaluates machine ToM both on multimodal data and on different kinds of unimodal data about a person’s activity in a household environment. To engineer multimodal ToM capacity, we propose a novel method, BIP-ALM (Bayesian Inverse Planning Accelerated by Language Models). BIP-ALM extracts unified representations from multimodal data and utilizes language models for scalable Bayesian inverse planning. We conducted a systematic comparison of human performance, BIP-ALM, and state-of-the-art models, including GPT-4. The experiments demonstrate that large language models and large multimodal models still lack robust ToM capacity. BIP-ALM, on the other hand, shows promising results, by leveraging the power of both model-based mental inference and language models.
2022
Skill Induction and Planning with Latent Language
Pratyusha Sharma
|
Antonio Torralba
|
Jacob Andreas
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
We present a framework for learning hierarchical policies from demonstrations, using sparse natural language annotations to guide the discovery of reusable skills for autonomous decision-making. We formulate a generative model of action sequences in which goals generate sequences of high-level subtask descriptions, and these descriptions generate sequences of low-level actions. We describe how to train this model using primarily unannotated demonstrations by parsing demonstrations into sequences of named high-level sub-tasks, using only a small number of seed annotations to ground language in action. In trained models, natural language commands index a combinatorial library of skills; agents can use these skills to plan by generating high-level instruction sequences tailored to novel goals. We evaluate this approach in the ALFRED household simulation environment, providing natural language annotations for only 10% of demonstrations. It achieves performance comparable state-of-the-art models on ALFRED success rate, outperforming several recent methods with access to ground-truth plans during training and evaluation.
Search
Co-authors
- Pratyusha Sharma 1
- Jacob Andreas 1
- Chuanyang Jin 1
- Yutong Wu 1
- Jing Cao 1
- show all...
Venues
- acl2