Anupama Ray
2023
Predict and Use: Harnessing Predicted Gaze to Improve Multimodal Sarcasm Detection
Divyank Tiwari
|
Diptesh Kanojia
|
Anupama Ray
|
Apoorva Nunna
|
Pushpak Bhattacharyya
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Sarcasm is a complex linguistic construct with incongruity at its very core. Detecting sarcasm depends on the actual content spoken and tonality, facial expressions, the context of an utterance, and personal traits like language proficiency and cognitive capabilities. In this paper, we propose the utilization of synthetic gaze data to improve the task performance for multimodal sarcasm detection in a conversational setting. We enrich an existing multimodal conversational dataset, i.e., MUStARD++ with gaze features. With the help of human participants, we collect gaze features for 20% of data instances, and we investigate various methods for gaze feature prediction for the rest of the dataset. We perform extrinsic and intrinsic evaluations to assess the quality of the predicted gaze features. We observe a performance gain of up to 6.6% points by adding a new modality, i.e., collected gaze features. When both collected and predicted data are used, we observe a performance gain of 2.3% points on the complete dataset. Interestingly, with only predicted gaze features, too, we observe a gain in performance (1.9% points). We retain and use the feature prediction model, which maximally correlates with collected gaze features. Our model trained on combining collected and synthetic gaze data achieves SoTA performance on the MUStARD++ dataset. To the best of our knowledge, ours is the first predict-and-use model for sarcasm detection. We publicly release the code, gaze data, and our best models for further research.
2022
A Multimodal Corpus for Emotion Recognition in Sarcasm
Anupama Ray
|
Shubham Mishra
|
Apoorva Nunna
|
Pushpak Bhattacharyya
Proceedings of the Thirteenth Language Resources and Evaluation Conference
While sentiment and emotion analysis have been studied extensively, the relationship between sarcasm and emotion has largely remained unexplored. A sarcastic expression may have a variety of underlying emotions. For example, “I love being ignored” belies sadness, while “my mobile is fabulous with a battery backup of only 15 minutes!” expresses frustration. Detecting the emotion behind a sarcastic expression is non-trivial yet an important task. We undertake the task of detecting the emotion in a sarcastic statement, which to the best of our knowledge, is hitherto unexplored. We start with the recently released multimodal sarcasm detection dataset (MUStARD) pre-annotated with 9 emotions. We identify and correct 343 incorrect emotion labels (out of 690). We double the size of the dataset, label it with emotions along with valence and arousal which are important indicators of emotional intensity. Finally, we label each sarcastic utterance with one of the four sarcasm types-Propositional, Embedded, Likeprefixed and Illocutionary, with the goal of advancing sarcasm detection research. Exhaustive experimentation with multimodal (text, audio, and video) fusion models establishes a benchmark for exact emotion recognition in sarcasm and outperforms the state-of-art sarcasm detection. We release the dataset enriched with various annotations and the code for research purposes: https://github.com/apoorva-nunna/MUStARD_Plus_Plus
2018
Semantic Parsing for Technical Support Questions
Abhirut Gupta
|
Anupama Ray
|
Gargi Dasgupta
|
Gautam Singh
|
Pooja Aggarwal
|
Prateeti Mohapatra
Proceedings of the 27th International Conference on Computational Linguistics
Technical support problems are very complex. In contrast to regular web queries (that contain few keywords) or factoid questions (which are a few sentences), these problems usually include attributes like a detailed description of what is failing (symptom), steps taken in an effort to remediate the failure (activity), and sometimes a specific request or ask (intent). Automating support is the task of automatically providing answers to these problems given a corpus of solution documents. Traditional approaches to this task rely on information retrieval and are keyword based; looking for keyword overlap between the question and solution documents and ignoring these attributes. We present an approach for semantic parsing of technical questions that uses grammatical structure to extract these attributes as a baseline, and a CRF based model that can improve performance considerably in the presence of annotated data for training. We also demonstrate that combined with reasoning, these attributes help outperform retrieval baselines.
Search
Fix data
Co-authors
- Pushpak Bhattacharyya 2
- Apoorva Nunna 2
- Pooja Aggarwal 1
- Gargi Dasgupta 1
- Abhirut Gupta 1
- show all...