Apoorv Saxena


2022

pdf bib
Sequence-to-Sequence Knowledge Graph Completion and Question Answering
Apoorv Saxena | Adrian Kochsiek | Rainer Gemulla
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge graph embedding (KGE) models represent each entity and relation of a knowledge graph (KG) with low-dimensional embedding vectors. These methods have recently been applied to KG link prediction and question answering over incomplete KGs (KGQA). KGEs typically create an embedding for each entity in the graph, which results in large model sizes on real-world graphs with millions of entities. For downstream tasks these atomic entity representations often need to be integrated into a multi stage pipeline, limiting their utility. We show that an off-the-shelf encoder-decoder Transformer model can serve as a scalable and versatile KGE model obtaining state-of-the-art results for KG link prediction and incomplete KG question answering. We achieve this by posing KG link prediction as a sequence-to-sequence task and exchange the triple scoring approach taken by prior KGE methods with autoregressive decoding. Such a simple but powerful method reduces the model size up to 98% compared to conventional KGE models while keeping inference time tractable. After finetuning this model on the task of KGQA over incomplete KGs, our approach outperforms baselines on multiple large-scale datasets without extensive hyperparameter tuning.

2021

pdf bib
Question Answering Over Temporal Knowledge Graphs
Apoorv Saxena | Soumen Chakrabarti | Partha Talukdar
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Temporal Knowledge Graphs (Temporal KGs) extend regular Knowledge Graphs by providing temporal scopes (start and end times) on each edge in the KG. While Question Answering over KG (KGQA) has received some attention from the research community, QA over Temporal KGs (Temporal KGQA) is a relatively unexplored area. Lack of broad coverage datasets has been another factor limiting progress in this area. We address this challenge by presenting CRONQUESTIONS, the largest known Temporal KGQA dataset, clearly stratified into buckets of structural complexity. CRONQUESTIONS expands the only known previous dataset by a factor of 340x. We find that various state-of-the-art KGQA methods fall far short of the desired performance on this new dataset. In response, we also propose CRONKGQA, a transformer-based solution that exploits recent advances in Temporal KG embeddings, and achieves performance superior to all baselines, with an increase of 120% in accuracy over the next best performing method. Through extensive experiments, we give detailed insights into the workings of CRONKGQA, as well as situations where significant further improvements appear possible. In addition to the dataset, we have released our code as well.

2020

pdf bib
Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings
Apoorv Saxena | Aditay Tripathi | Partha Talukdar
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Knowledge Graphs (KG) are multi-relational graphs consisting of entities as nodes and relations among them as typed edges. Goal of the Question Answering over KG (KGQA) task is to answer natural language queries posed over the KG. Multi-hop KGQA requires reasoning over multiple edges of the KG to arrive at the right answer. KGs are often incomplete with many missing links, posing additional challenges for KGQA, especially for multi-hop KGQA. Recent research on multi-hop KGQA has attempted to handle KG sparsity using relevant external text, which isn’t always readily available. In a separate line of research, KG embedding methods have been proposed to reduce KG sparsity by performing missing link prediction. Such KG embedding methods, even though highly relevant, have not been explored for multi-hop KGQA so far. We fill this gap in this paper and propose EmbedKGQA. EmbedKGQA is particularly effective in performing multi-hop KGQA over sparse KGs. EmbedKGQA also relaxes the requirement of answer selection from a pre-specified neighborhood, a sub-optimal constraint enforced by previous multi-hop KGQA methods. Through extensive experiments on multiple benchmark datasets, we demonstrate EmbedKGQA’s effectiveness over other state-of-the-art baselines.