Areeg Fahad Rasheed
2024
Mashee at SemEval-2024 Task 8: The Impact of Samples Quality on the Performance of In-Context Learning for Machine Text Classification
Areeg Fahad Rasheed
|
M. Zarkoosh
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Within few-shot learning, in-context learning(ICL) has become a potential method for lever-aging contextual information to improve modelperformance on small amounts of data or inresource-constrained environments where train-ing models on large datasets is prohibitive.However, the quality of the selected samplein a few shots severely limits the usefulnessof ICL. The primary goal of this paper is toenhance the performance of evaluation metricsfor in-context learning by selecting high-qualitysamples in few-shot learning scenarios. We em-ploy the chi-square test to identify high-qualitysamples and compare the results with those ob-tained using low-quality samples. Our findingsdemonstrate that utilizing high-quality samplesleads to improved performance with respect toall evaluated metrics.