Arian Hosseini


2022

pdf bib
On the Compositional Generalization Gap of In-Context Learning
Arian Hosseini | Ankit Vani | Dzmitry Bahdanau | Alessandro Sordoni | Aaron Courville
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Pretrained large generative language models have shown great performance on many tasks, but exhibit low compositional generalization abilities. Scaling such models has been shown to improve their performance on various NLP tasks even just by conditioning them on a few examples to solve the task without any fine-tuning (also known as in-context learning). In this work, we look at the gap between the in-distribution (ID) and out-of-distribution (OOD) performance of such models in semantic parsing tasks with in-context learning. In the ID settings, the demonstrations are from the same split (test or train) that the model is being evaluated on, and in the OOD settings, they are from the other split. We look at how the relative generalization gap of in-context learning evolves as models are scaled up. We evaluate four model families, OPT, BLOOM, CodeGen and Codex on three semantic parsing datasets, CFQ, SCAN and GeoQuery with different number of exemplars, and observe a trend of decreasing relative generalization gap as models are scaled up.

2021

pdf bib
Understanding by Understanding Not: Modeling Negation in Language Models
Arian Hosseini | Siva Reddy | Dzmitry Bahdanau | R Devon Hjelm | Alessandro Sordoni | Aaron Courville
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Negation is a core construction in natural language. Despite being very successful on many tasks, state-of-the-art pre-trained language models often handle negation incorrectly. To improve language models in this regard, we propose to augment the language modeling objective with an unlikelihood objective that is based on negated generic sentences from a raw text corpus. By training BERT with the resulting combined objective we reduce the mean top 1 error rate to 4% on the negated LAMA dataset. We also see some improvements on the negated NLI benchmarks.